
EK-NIA20-RM-001

NIA20 Technical
Reference Manual

• IIL«

EK-NIA20-RM-001

NIA20 Technical
Reference Manual

Prepared by Educational Services

of

Digital Equipment Corporation

1st Edition, January 1985

Digital Equipment Corporation 1985.

All Rights Reserved.

Printed in U.S.A.

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no
responsibility for any errors that may appear in
this n.anual

.

This book was produced on a DIGITAL Word
Processing System. Book production was done by
Educational Services Development and Publishing
in Marlboro, MA.

The following are trademarks of Digital Equipment
Corporation:

MICRO/PDP-11 RSX
DEC MicroVAX RT
DECmate PDP UNIBUS
DECUS P/OS VAX
DECwriter Professional VAXcluster
DIBOL Q-Bus VMS
LSI-11 Rainbow VT
MASSBUS RSTS Work Processor

PREFACE

CONTENTS

Page

CHAPTER 1 INTRODUCTION

NIA20 SUBSYSTEM OVERVIEW 1-3
Network Interconnect Adapter Module 1-4
Port

, 1_5
EBus Interface/Port ALU Module (M3001) !l-5
Port Microprocessor Control Module (M3002) 1-6
CBus-PLI Interface Module (M3003) „ 1-6

H4000 Transceiver
, 1-6

Transmit Function , 1-7
Watchdog Timer Function 1-7
Collision Presence Function 1-7
Collision Presence Test Function (Heartbeat) ... 1-7
Receive Function , I-7
DC To DC Converter I-7

3.7 Coaxial Cable Connection 1-7
3.8 Transceiver Cable Connections 1-8

ETHERNET SPECIFICATION OVERVIEW 1-8
1 Packet Format 1-8
1.1 Maximum Packet Size I-9
1.2 Minimum Packet Size I-9
1.3 Preamble 1-9
1.4 Destination Address I-9
1.5 Source Address 1-10
1.6 Type Field 1-10
1.7 Data Field 1-10
1.8 Packet Check Sequence 1-10
1.9 Round-Trip Delay 1-10
2 Control Procedures 1-10
2.1 Defer 1-10
2.2 Transmit 1-11
2. 3 Abort 1-11
2.4 Retransmit 1-11
2.5 Backoff .1-11
3 Manchester Encoding 1-11
4 Carrier Sense 1-12
5 Transceiver Connections 1-12
6 Transceivers 1-12

1

1

1

1

1

1

1

1

1

1,

1

1

1,

1,

1,

1,

1,

1,

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

.1

,1.

1.

,1.

1.

1.

1.

1.

1.
1.
1.

1.

1.

1.
2

2.

2.
2.

2.
2.
2.

2.

2.

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.

2.

Ill

CONTENTS (Cont)

Page

CHAPTER 2 IMPLEMENTATION

2 .

1

IMPLEMENTATION OVERVIEW 2-1
2 . 2 QUEUE STRUCTURE 2--2

2.2.1 Queue Linkage 2-2
2.2.2 Queue Interlocks 2-3
2.2.3 Queue Locations 2-3
2 . 3 QUEUE HANDLING 2-8
2.3.1 Queue Headers 2-8
2.3.2 Entry Linking 2-9
2.3.3 Entry Removal 2-11
2.3.3.1 Buffer Segment Descriptors 2-12
2.3.3.2 Buffer Segment Descriptor Format 2-13
2.4 COMMANDS AND RESPONSES 2-14
2.4.1 Command and Response Formats. 2-15
2.4.1.1 Send Datagram (SNDDG) Command 2-15
2.4.1.2 Datagram Sent (DGSNT) Response 2-19
2.4.1.3 Datagram Received (DGRCV) Response 2-21
2.4.1.4 Load Protocol Type Table (LDPTT) Command 2-24
2.4.1.5 Protocol Type Table Loaded (PTTLD) Response ... 2-25
2.4.1.6 Load Multicast Address Table (LDMCAT)

Command 2-25
2.4.1.7 MCAT Loaded Response LDMCAT 2-26
2.4.1.8 Read and Clear Performance Counters RCCNT

Command 2-27
2.4.1.9 Counters Read or Cleared (CNTRC) Response 2-27
2.4.1.10 Write Port Link Interface (WRTPLI) Command 2-32
2.4.1.11 Port Link Interface Written (PLIWRT)

Response 2-33
2.4.1.12 Read Port Link Interface (RDPLI) Command 2-33
2.4.1.13 Port Link Interface Read (PLIRD) Response 2-34
2.4.1.14 Read NI Station Address (RDNSA) Command 2-35
2.4.1.15 NI Station Address Read (NSARD) Response 2-36
2.4.1.16 Write NI Station Address (WRTNSA) Command 2-37
2.4.1.17 NI Station Address Written (NSAWRT) Response .. 2-38
2.4.2 Self-Directed Commands — Loopback 2-38
2 . 5 DATA FORMATTING/PACKING MODE 2-39
2 . 6 MAINTENANCE OPERATION PROTOCOL 2-39
2 . 7 ERROR HANDLING 2-39
2.7.1 Error Events 2-40
2.7.2 Discarded Datagrams 2-41
2.7.3 Event Counters 2-41
2.8 CONTROL AND STATUS REGISTER 2-42
2.9 NETWORK ARCHITECTURE AND FUNCTIONAL LAYERS .2-4 3

2.9.1 Physical Link Layer and Data Link Layers 2-43
2.9.2 Routing Layer 2-44
2.9.3 End-to-End Communications Layer 2-44

IV

CONTENTS (Cont)

2.9.4
2.9.5
2.9.6
2.9.7
2.9.8
2.9.9

CHAPTER 3

3.4

3.4.7

CHAPTER 4

1

1

1

1

2

3

3

3

4

5

5

5

5

5

5

5

5

5.7
5.7

4.5.7
4.5.7

Page

Session Control Layer 2-44
Network Application Layer 2-44
Network Management Layer 2-44
User Layer 2-44
Layer Interfaces 2-44
Expanded ETHERNET Networks 2-45

INSTALLATION OF NIA20 IN KLIO-E

OVERVIEW 3-1
UNPACKING AND CHECKOUT 3-7
EQUIPMENT NEEDED FOR INSTALLATION AND CHECKOUT 3-7
INSTALLATION PROCEDURE 3-8
Preinstallation Checkout 3-8
Backplane Wire Adds 3-8
Installation of Port Modules ..3-9
Power Supply Regulator Installation 3-12
Installation of NIA20 Card Cage/Internal Cable. .3-13

Installation of NIA20 Current Limiter 3-17
Harness Installation 3-17

Installation of KLIO Adapter Board and Blank
Module Assembly. . 3-23
Checkout. 3-24

FUNCTIONAL DESCRIPTION

PORT STATES 4-1
Uninitialized 4-1
Disabled 4-1
Enabled 4-1

CONTROL AND STATUS REGISTER 4-2
EBUS. 4-6

EBus Interrupts 4-10
Examine/Deposit Request Response 4-12

CBUS. . . 4-13
PLI 4-20

PLI Interface Signals 4-21
Data (7:0) (Asserted High) 4-21
Select (Asserted Low) 4-21
Receiver Attention (Asserted High) 4-21
End of Frame (Asserted High) 4-22
Transmitter Attention (Asserted High) 4-22
PLI/Link Control (Asserted High) 4-22
Write Transmit Buffer (WT XMIT BUF) 4-23
Transmit Action (FOUR COMMAND) Group 4-23
Read Transmit Status (RD XMIT STATUS) 4-24
Read Receive Buffer (RD REC BUF) 4-24

V

CONTENTS (Cont)

Page

4.5.7.5 Read Receiver Status Register
(RD REC STATUS) 4-24

4.5.7.6 Read Receive Memory Used Buffer Address
List (RD USED BUF LST) 4-24

4.5.7.7 Transfer Byte from Receive Memory to the
Transmit Buffer (REC TO XMIT BUF) 4-24

4.5.7.8 Reset Receive Attention (RESET REC ATT) 4-24
4.5.7.9 Enable Link Control/Disable Link Control 4-24
4.5.7.10 Write Receive Memory Buffer Read Address

to the Read Memory Address Register
(WT REC BUF RD ADRS REGISTER) 4-25

4.5.7.11 Write Free Buffer List (WT FREE BUF LST) 4-25
4.5.7.12 Clear Receive Buffer (CLR RCV BUF) 4-25
4.5.7.13 Write Address Register (WT ADRS REG) 4-25
4.5.7.14 Read Register (RD REG) 4-25
4.5.7.15 Write Register (WT REG)... ,..4-25
4.5.8 Transmit Parity (Odd) (TTL Asserted High) 4-25
4.5.9 Receive Data Parity (Odd) (TTL Asserted High). ..4-25
4.5.10 Clock Timing (PLI Bus) 4-26
4.5.11 Initialize (TTL, Asserted High) 4-26
4.5.12 Receive and Transmit Status 4-26
4.6 SIMPLIFIED NIA BLOCK DESCRIPTION 4-26
4.6.1 Simplified Transmit Operation 4-27
4.6.2 Simplified Receive Operation 4-30

CHAPTER 5 LOGIC DESCRIPTION

5.1 EBUS INTERFACE AND PORT ALU MODULE ,..5-1
5.1.1 Introduction, 5-1
5.1.2 EBus Control and Status Register 5-2
5.1.3 EBus Control Logic 5-14
5.1.3.1 Port Microprocessor Not Running 5-14
5.1.3.2 Port Microprocessor Running 5-15
5.1.3.2.1 EBus Interrupts , 5-16
5.1.3.2.2 Examine/Deposit Request Response 5-19
5.1.4 Microprocessor to EBus Register 5-20
5.1.5 EBus to Microprocessor Multiplexer (EMUX) 5-20
5.1.6 Microprocessor to EBus Multiplexer (KMUX) 5-21
5.1.7 EBus Parity Generator 5-23
5.1.8 EBus Parity Checker 5-23
5.1.9 EBus Transceivers 5-23
5.1.10 Arithmetic Logic Unit 5-23
5.1.11 Constant Multiplexer 5-26
5.2 CBUS/DATA MOVER (CMVR) INTERFACE MODULE 5-27
5.2.1 CMVR Control Logic... 5-28
5.2.2 Data Mover and Formatter (MVR/FMTR) 5-29
5.2.3 Data Input Multiplexer 5-33
5.2.4 PLI Serial Up Multiplexer (SUMUX) 5-33

VI

CONTENTS (Cont)

Page

5.2.5 PLI Serial Down Multiplexer (SDMUX) 5-34
5.2.6 PLI Output Multiplexer (PMUX) S-34
5.2.7 CMVR to Microprocessor Multiplexer (CMUX) 5-35
5.2.8 Microprocessor to CMVR Register (CBUF) 5-35
5.2.9 CBus Input Buffer... 5-36
5.2.10 CBus In Parity Checker 5-36
5.2.11 CBus Output Buffer 5-36
5.2.12 CBus Out Parity Generator 5-36
5.2.13 CBus Control Logic. 5-36
5.2.14 PLI Input Buffer. 5-38
5.2.15 PLI Parity In Checker 5-38
5.2.16 PLI Output Buffer 5-39
5.2.17 PLI Parity Out Generator 5-39
5.2.18 PLI Control Logic 5-39
5.2.19 Parity Predictor 5-39
5 . 3 PORT MICROPROCESSOR 5-41
5.3.1 Condition Code Multiplexer 5-41
5.3.2 Mi cr©sequencer ,, 5-44
5.3.3 RAM Address Register 5-46
5.3.4 Latch Address Register ., 5-47
5.3.5 Address Multiplexer ,. 5-48
5.3.6 Control RAM 5-48
5.3.7 CRAM Load Buffers 5-49
5.3.8 CRAM Parity Checker 5-50
5.3.9 CRAM Register....... 5-50
5.3.10 Microword Field Definitions5-51
5.3.11 Microword Output Multiplexer 5-62
5.3.12 Jump Multiplexer 5-62
5.3.13 Local Storage RAM 5-63
5.3.14 RAM Mode Multiplexer ...5-63
5.3.15 Local Storage Address Register 5-64
5.3.16 Skip Condition Field Decoder 5-64
5.3.17 Microprocessor Control Logic... 5-65
5.4 MICROCODE 5-65
5.4.1 Initialization .5-65
5.4.2 Idle Loop 5-70
5.4.3 Rece ive 5-7 3
5.4.4 Transmit and Local Command ,...5-81

APPENDIX A INSTALLATION OF NIA20 IN KLIO-D

A. 1 OVERVIEW A-1
A. 2 UNPACKING AND CHECKOUT A-7
A.

3

EQUIPMENT NEEDED FOR INSTALLATION AND CHECKOUT A-7
A. 4 INSTALLATION PROCEDURE A-7

VI 1

CONTENTS (Cont)

Page

A. 4.1 Preinstallat ion Checkout.,... A-7
A. 4.

2

Backplane Wire Adds ,.. A-8
A. 4. 3 Installation of Port Modules A-9
A. 4. 4 Power Supply Regulator Installation ..A-13
A. 4. 5 Installation of NIA20 Card Cage/Cable A-14
A. 4. 5.1 Installation of NIA20 Current Limiter A-17
A. 4. 5.2 Harness Installation A-17
A. 4.

6

Installation of KLIO Adapter Board and Blank
Module Assembly , , A-23

A. 4.

7

Checkout A-24

APPENDIX B INSTALLATION OF NIA20 IN KLIO-R

B.l OVERVIEW , . . B-1
B.2 UNPACKING AND CHECKOUT .B-7
B.3 EQUIPMENT NEEDED FOR INSTALLATION AND CHECKOUT B-7
B . 4 INSTALLATION PROCEDURE 3-8
B.4.1 Preinstallation Checkout ...,B-8
B.4.2 Backplane Wire Adds B-8
B.4.3 Installation of Port Modules . .B-9
B.4.4 Power Supply Regulator Installation B-13
B.4.5 Installation of NIA20 Card Cage/Internal Cable.. B-13
B.4.5.1 Installation of NIA20 Current Limiter... B-17
B.4.5. 2 Harness Installation B-18
B.4.6 Installation of KLIO Adapter Board and Blank

Module Assembly . .B-24
B.4.7 Checkout , B-25

FIGURES

Figure No. Title Page

1-1 Large-scale Ethernet Configuration .1-2
1-2 Simplified NIA20 Block Diagram , 1-4
1-3 Ethernet Data Packet Format 1-9
1-4 Manchester Encoding ,, 1-11
2-1 Queue Entry Format .,...,2-1
2-2 Queue Linkage 2-2
2-3 KLIO Memory PCB Format , 2-4
2-4 Error Word 3 Format 2-5
2-5 Protocol Type Table Format ,. 2-6
2-6 Multicast Address Table Format 2-7
2-7 Queue Header Format , 2-8
2-8 Use of Queue Headers,, 2-9
2-9 Empty Queue 2-10
2-10 Queue with Entry at Address A 2-10
2-11 Entry at Address B at the Tail of the Queue 2-10
2-12 Entry at Address C at the Tail of the Queue 2-11

VI 1 1

CONTENTS (Cont)

Page

2-13 Queue Containing Entries A, B, and C, Where
A Can Be Removed 2-12
BSD Format 2-13
SNDDG Command Format (BSD) 2-17
SNDDG Command Format (Non-BSD) 2-18
Send Datagram 2-18
Non-Send Datagram * 2-18
Destination Address Format 2-19
DGSNT Response Format (Non-BSD) 2-20
DGSNT Response Format (BSD) 2-21
Status Field from Queue 2-21
DGRCV Response Format 2-23
Originating Port Address Format 2-24
LDPTT Command Format. ,2-25
PTTLD Response Format 2-25
LDMCAT Command Format , , . 2-26
MCATLD Response Format 2-26
RCCNT Command Format 2-27
CNTCL Response Format 2-28
WRTPLI Command Format , 2-32
PLIWRT Response Format 2-33
RDPLI Command Format , 2-34
PLIRD Response Format , , 2-34
RDNSA Command Format 2-35
RDNSA Response Format 2-36
WRTNSA Command Format , 2-37
NSAWRT Response Format. 2-38
KLIO Word (Industry-Compatible Mode) 2-39
Digital Network Architecture (DNA) —
Functional Layers 2-43
DNA Layers and Interfaces 2-45
DECnet Network with Many Ethernet Segments 2-46
NIA20 in KLIO-E, Rear View 3-1
NIA20 in KLlO-E, Front View 3-3
MBus Cable Interboard Connection, Top View 3-6
NIA20 De-skew Timing. External Sync (CHTO H) 3-11
NIA20 De-skew Timing. EBUS CLK L and
MTR MBOX CLK 3-11
H7420 Power Supply 3-13
NIA20 Card Cage Views 3-14
NIA20 Card Cage in KLIO-E 3-15
NIA20 Current Limiter 3-16
NIA20 Harness and Cable Interconnection Diagram ... 3-18
DC Power Cable , 3-19
Vane Switch Cable 3-20
Vane Switch Harness Installation 3-21
DC Voltage Monitor Cable 3-22
Fan AC Cable and Power Cord 3-23

IX

2--14
2--15
2--16
2--17
2--18
2--19
2--20
2--21
2--22
2--23
2--24
2--25
2--26
2--27
2--28
2--29
2--30
2--31
2--32
2--33
2--34
2--35
2--36
2--37
2--38
2--39
2--40

2--41
2--42
3--1

3--2

3--3

3--4

3-5

3-6
3--7

3-8
3--9

3--10
3--11
3--12
3--13
3-14
3--15

CONTENTS (Cont)

Page

4-1 Port Control and Status Register 4-2
4-2 EBus-to-Port Simplified Block Diagram 4-6
4-3 EBus Signals 4-7
4-4 lOP Function Control Word ..4-10
4-5 CBus-to-Port Simplified Block Diagram ..4-14
4-6 CBus Signals 4-16
4-7 CBus Operation 4-18
4-8 PLI-to-Port Simplified Block Diagram 4-20
4-9 Clock Timing ., 4-27
4-10 Simplified NIA Block Diagram ...4-28
4-11 PLI Interface Transmit Flow Diagram 4-31
4-12 PLI Interface Receive Flow Diagram ..4-35
5-1 CSR Bits 5-2
5-2 lOP Function Control Word 5-16
5-3 EBus to Microprocessor Multiplexer..... 5-21
5-4 Microprocessor to EBus Multiplexer 5-22
5-5 AM2901 ALU Block Diagram (Simplified) 5-24
5-6 Constant Multiplexer (Simplified) 5-27
5-7 Port Clock Timing 5-29
5-8 Mover/Formatter Data Flow 5-32
5-9 DMUX (Simplified) , .5-33
5-10 SUMUX (Simplified) 5-33
5-11 SDMUX (Simplified) .5-34
5-12 PMUX (Simplified) 5-35
5-13 CMUX (Simplified) 5-3 5
5-14 Am2910 Block Diagram (Simplified) 5-44
5-15 Address Multiplexer (Simplified) 5-48
5-16 CRAM Load Buffers (Simplified) 5-50
5-17 Microword Output Multiplexer (Simplified) 5-62
5-18 Jump Multiplexer (Simplified) 5-62
5-19 RAM Mode Multiplexer (Simplified) 5-63
5-20 Initialization Microcode Flow Diagram 5-66
5-21 Idle Loop Microcode Flow Diagram 5-71
5-22 Receive Microcode Flow Diagram 5-74
5-23 Transmit and Local Command Microcode

Flow Diagram , , 5-82
A-1 NIA20 in KLIO-D, Rear View A-2
A-2 NIA20 in KLlO-D, Front View... A-3
A-3 MBus Cable Interboard Connection, Top View A-10
A-4 NIA De-skew Timing. External Sync (CHTO H) A-11
A-5 NIA20 De-skew Timing. EBus CLK L and

MTR MBOX CLK , A-12
A-6 H7420 Power Supply A-13
A-7 NIA20 Card Cage in KLIO-D. A-15
A-8 NIA20 Card Cage Views A-16
A-9 NIA20 Current Limiter A-16
A-10 NIA20 Harness and Cable Interconnection Diagram. . .A-18
A-11 DC Power Cable A-19

A--12

A--13
A--14

A--15
B--1

B--2

B--3

B--4

B--5

B--6

B--7

B--8

B--9

B--10
B--11

B--12

B--13
B--14

B--15

CONTENTS (Cont)

Page

Vane Switch Cable A-20
Vane Switch Harness Installation A-21
DC Voltage Monitor Cable A-22
Fan AC Cable and Power Cord A-23
NIA20 in KLIO-R, Rear View B-2
NIA20 in KLIO-R, Front View B-3
MBus Cable Interboard Connection, Top View B-10
NIA20 De-skew Timing. External Sync (CHTO H) B-12
NIA20 De-skew Timing. EBUS CLK L and
MTR MBOX CLK B-1 3

H7420 Power Supply B-14
NIA20 Card Cage Views B-15
NIA20 Card Cage in KLlO-R B-16
NIA20 Current Limiter, Cutaway View B-17
NIA20 Harness and Cable Interconnection Diagram. . .B-20
DC Power Cable B-21
Vane Switch Cable B-22
Vane Switch Harness Installation B-23
DC Voltage Monitor Cable , B-24
Fan AC Cable and Power Cord B-24

TABLES

Table No. Title Page

1-1 H4000 Pin Assignments 1-8
2-1 Error Word 3 Bit Descriptions 2-5
2-2 Error Log and Type 2-22
2-3 Transmission Failure Bit Mask Assignments 2-30
2-4 Reception Failure Bit Mask Assignments 2-31
2-5 Command Code Values and Functions 2-33
2-6 Control Bit Values and Functions 2-35
2-7 Possible Error Conditions 2-40
3-1 Parts List, NIA20 in KLIO-E 3-1
3-2 NIA20 in KLlO-E Harness and Cable Connections 3-3
3-3 NIA20 in KLIO-E Wire Adds 3-9
4-1 Control and Status Register Bit Definitions .4-3
4-2 EBus Signal Description 4-7
4-3 KLIO Diagnostic Functions 4-9
4-4 lOP Function Control Word 4-10
4-5 CSR Bit Description 4-15
4-6 CBus Cycles 4-18
4-7 PLI Signals 4-21
4-8 Link Control Signals 4-22
4-9 Transmit Action Command Group 4-23
4-10 Write Address Register Access Table 4-26

XI

CONTENTS (Cont)

Page

5-1 CSR Bit Description 5-3
5-2 EBus Functions 5-14
5-3 lOP Function Control Word Bit Description 5-16
5-4 ALU Control Commands *; 5-24
5-5 Decoder Output Signals 5-28
5-6 Mover/Formatter Control Commands 5-30
5-7 Condition Code Definitions 5-42
5-8 Microsequencer Instructions... 5-45
5-9 Microword Field Definitions 5-51
5-10 Skip/Condition Function 5-64
5-11 Cache Base Addresses 5-67
5-12 Local Store Address Register Command Status

Block Offsets , 5-68
5-13 Command Queue Status Block Flag Word 5-69
A-1 NIA20 in KLIO-D Parts List...,. A-4
A-2 NIA20 in KLlO-D, Harness and Cable Connections A-5
A-3 NIA20 in KLlO-D Wire Adds A-8
B-1 NIA20 in KLIO-R, Parts List B-4
B-2 NIA20 in KLlO-R, Harness and Cable Connections B-5
B-3 MBus Cable Interboard Connection, Top View B-10
B-4 NIA20 De-skew Timing. External Sync (CHTO H) B-12
B-5 NIA20 De-skew Timing. EBUS CLK L and

MTR MBOX CLK B-1 3

B-6 H7420 Power Supply B-14
B-7 NIA20 Card Cage Views B-15
B-8 NIA20 Card Cage in KLlO-R B-16
B-9 NIA20 Current Limiter, Cutaway View B-17
B-10 NIA20 Harness and Cable Interconnection Diagram. . .B-20
B-11 DC Power Cable B-21
B-12 Vane Switch Cable B-22
B-13 Vane Switch Harness Installation B-23
B-14 DC Voltage Monitor Cable B-24
B-15 Fan AC Cable and Power Cord B-25

xii

PREFACE

This reference manual provides a technically oriented description
of the Network Interconnect Adapter (NIA20) . This description
includes detail on implementation and installation, as well as
functional and logic characteristics. The NIA20 is required by
Digital Equipment Corporation field service, manufacturing,
engineering, software, and operational personnel.

This manual contains a preface, five chapters, and two appendices
as outlined in the Table of Contents.

xiii

CHAPTER 1

INTRODUCTION

The network interconnect (NI) , a major element in the network
architecture of Digital Equipment Corporation, uses a single
coaxial cable to transmit serial datagrams between stations (or
nodes) . The form of the datagrams (also called frames or packets)
is dictated in the Ethernet specification.

The NI is used as a local area network (LAN) to link information
processing equipment within an area (limited to a building or
complex of buildings) through reliable, high-speed communications
channels. Extensive and complex configurations are possible using
the NI as the primary interprocessor and processor to corporate
communications server products.

The NI has several advantages over other interconnects. It is a
multiple-access network, not a point-to-point link. This design
allows wiring and then simply tapping into the cable wherever the
computing power is needed. Nodes can be added or removed from a
network during its operation. There is no centralized control.
Also, a system failure connected to the NI should not affect
communications among other systems on the NI.

All nodes on an NI must conform to the same Ethernet rules
governing data transfers and arbitration. Digital Equipment
Corporation has integrated Ethernet into the Digital Network
Architecture (DNA) in its DECnet products, all of which conform
closely to the International Standards Organization (ISO) model
for Open Systems Interconnection. Ethernet is a specification for
the physical implementation of local area communications. It
provides high-speed communications (10 megabits per second) and a
common bus, with all nodes communicating as peers using a standard
link-level protocol — Carrier Sense Multiple Access with
Collision Detection (CSMA/CD)

.

The CSMA/CD protocol is simple and efficient. It is a
first-come/first-served system. Each node is free to communicate
with any other node at any time, provided two simple rules are
followed

.

1. No node can start talking while another node is still
talking

.

2. Once the Ethernet cable is idle, if more than one node
starts talking at exactly the same instant, each must
stop and wait a short, randomly-determined time interval
and try again.

Ethernet technology allows cable segments up to 500 meters (1650
feet) long. Through the use of repeaters, multiple segments can be
connected, with up to 100 nodes each and connections separated by
at least 2.5 meters (8.25 feet). LANs can be constructed with as

1-1

many as 1024 nodes, but two nodes cannot be separated by more than

two repeaters.

The maximum length of coaxial cable between any two nodes is 1500

meters (4950 feet) , and the maximum length of the transceiver
cable (between a transceiver and the controller) is 50 meters (165

feet)

.

A maximum of 1000 meters (3300 feet) of point-to-point link is

allowed for extending the network. One possible example would be

to connect two Ethernet segments, using a high-speed,
point-to-point fiberoptic link.

The 2800-meter (9240 feet) maximum end-to-end length of the LAN

between any two nodes is the sum of three 500-meter (1650 foot)

coaxial cable segments, plus six 50-meter (165 foot) transceiver
cables, plus 1000 meters (3300 feet) of point-to-point link.

Figure 1-1 shows a large-scale configured Ethernet LAN.

n
SEGMENT 1 c>

-[]

D-

6^^
n

SEGMENT 4[}

G

NODE

TRANSCEIVER CABLE

TRANSCEIVER

LOCAL
REPEATER

t>-6

SEGMENTS

a B B B B

REMOTE
REPEATER

O-f^

SEGMENT 2

[J

COAXIAL
"cable

POINT-TO-POINT [}
LINK (1000 M MAX)

O^^ segments

[]

c>

Figure 1-1 Large-Scale Ethernet Configuration

1-2

1.1 NIA20 SUBSYSTEM OVERVIEW
The Network Interconnect Adapter (NIA20) is a hardware/firmware
option that will be used to interface the operating system of the
KLIO to the high-speed serial NI line.

The NIA20 subsystem consists of the following:

The port, which will reside in RH20 slot number 5. The
port consists of three standard hex modules:

M3001 — EBus interface module
M3002 — Microprocessor control module
M3003 — CBus interface module.

The port interfaces to the KLIO via the EBus and CBus,
and to the NIA module via the port link interface (PLI)
bus.

The NIA module, which is an extended tri-board module
residing in the CPU bay of the KLIO. It is housed in an
NI card cage and backplane unit located in the CPU bay.
The NIA is controlled by the port in a master/slave
manner and is used to transmit and receive data packets
through the transceiver and onto the serial NI coaxial
cable.

The H4000 transceiver (and transceiver cable) , which taps
into the coaxial NI cable and allows the NIA to transmit,
receive, and detect data collisions.

The NI cable, which is a 10 megabit-per-second

,

multiaccess serial interconnect. It allows up to 1024
different nodes to communicate by exchanging data
packets

.

The current limiter board (and bulkhead connector) , which
provides the interface between the NIA and H4000 and
current-limits the 15 volts to the H4000.

The relationships among these units is shown graphically in Figure
1-2.

Although listed as part of the subsystem, the NI coaxial cable is
not included as an NIA20 part because the need varies according to
the configuration of the LAN.

The NIA20 is made up of the transceiver (and transceiver cable)

,

MBus and PLI cables, current limiting bulkhead connector, card
cage, and four modules: NIA module, EBus interface/port arithmetic
and logic unit (ALU) module, port microprocessor control module,
and CBus-PLI interface.

1-3

KL-10
DATA
CHAIN c CBUS

C EBUS)

NIA
MODULE

CUR
LIM

Cf^fi^ ^o xJ^"^^
^*^^

,^^^^.ce.'>o.< ?-^

.2?/?^/

TRANSCEIVER CABLE

XCEIVER
h4qoo

XCEIVER XCEIVER

f
Nl NODE

-»- Nl

Nl NODE

Figure 1-2 Simplified NIA20 Block Diagram

Three of these four modules (EBus interface/port ALU, port
microprocessor control, and CBus-PLI interface) make up the port.
The port is responsible for implementation of the data link and
port layers of the Systems Communications Architecture (SCA)

protocol. The port is responsible for all data transfers, between
KLIO memory and the NIA module. The port gets its instructions
from queued I/O structures in KLIO memory, and makes the transfers
through the use of command/response queues.

1.1.1 Network Interconnect Adapter Module
The NIA module acts as the link and buffer between the KLIO PLI
bus and the Nl transceiver cable (between port and Nl Wire) . The
NIA module contains a transmit buffer (2K X 10 bits) , a receive
buffer (16K X 10 bits) and a permanently stored ROM containing the
Ethernet port address.

As the NIA module receives a packet/frame from the Nl wire, the
receive buffers are loaded and organized via the use of free and
used buffer lists. The buffers are read by the port modules and
data is sent to KLIO memory via the CBus.

1-4

The transmit buffer is loaded by the port with frame data. When
the entire frame has been loaded, the port commands the NIA to
transmit. When the NIA is free to transmit, it reads the transmit
buffer as it transmits the frame. In addition to transmission and
reception, the NIA performs the following functions:

1. CRC generation and checking
2. Transmission deferral when wire is busy
3. Detection of collisions during transmission
4. Automatic retry after collisions
5. Maintenance of transmit status conditions
6. Parallel/serial bit stream conversion
7. Encoding/decoding of the bit stream
8. Carrier sensing and data synchronization
9. Destination address decoding
10. Maintenance of receive status conditions
11. Buffering of incoming frames from 10 to 64 (depending on

their size)
12. Parity generation and checking
13. Various internal loopback and checkout features.

1.1.2
The port
operation
memory in

Port
is an Am2901
of the NIA20.
addition to 4K

based microprocessor which controls the
The port has IK by 36 bits of local RAM
by 60 bits of control RAM. Microprogram

sequencing is done by an Am2910.

Control and status information is passed between the port and the
KLIO via the KLIO EBus interface, DMA data transfers between the
port and the KLIO are done via the KLIO CBus interface.

The port consists of three standard hex fine-line etch modules
inserted into a dedicated low-priority RH20 slot (slot 5, with
slot 4 left empty) in the KLIO RH20-DTE20 backplane.

The three modules are linked by a 36-bit tristate data path called
the microprocessor bus (MBus) . All data is passed among the port
modules via this bus.

1.1.2.1 EBus Interface/Port ALU Module (M3001) — The EBus
interface/port ALU module acts as a low-speed asynchronous control
interface betwe_Qn the KLIO RRQX and the port. It performs all of
"EHe functions required for passing data between the EBus and the
micxxiprocessor^. It also contains a 36-bit control and status
register, which enables the port to control and monitor EBus
operations. Most of the port protocol is processed over the EBus
through this interface. -

"""

1-5

In addition, this module houses the port microprocessor ALU. The
ALU consists of nine Am2901 bit slice ICs (36-bit data path) and
four Am2902 high-speed look-ahead carry generators. A constant
multiplexer is also included, which allows the port microprocessor
to pass preassigned constants from the control store RAM (CRAM) to
the ALU.

1.1.2.2 Port Microprocessor Control Module (M3002) — The port
microprocessor consists of a bit slice microprocessor controller,
which controls the CBus/mover and the EBus/port ALU interfaces. It
performs such functions as data mapping, NI packet interpretation,
and some packet buffer manipulations. It contains a 2910 type
microsequencer , a CRAM 4 K deep by 60 bits wide, a scratch pad R^
IK deep by 36 bits wide, a CRAM control register, and other
associated control logic.

Once the CRAM is loaded and the microprocessor is started, the
port is entirely under control of the microwords that are strobed
from the CRAM into the CRAM control register at the beginning of
each clock cycle.

1.1.2.3 CBus-PLI Interface Module (M3003) — The CBus-PLI
interface module acts as a high-speed synchronous DMA data
transfer path and data formatter between the packet buffer and the
KLIO CBus channel. This module employs a 4-bit parallel by 12-bit
serial shift register for the data formatter, which is used for
mapping between 8-bit bytes and 36-bit words. This module also
contains the necessary control logic for performing data transfers
among the shift register, the CBus, and the PLI interfaces.

In addition, the module supports a 36-bit read/write data path
(MBus) between the port microprocessor and the data formatter, and
an 8-bit read/write data path (PLI bus) between the port
microprocessor and the PLI interface. Thus the port microprocessor
transfers data direct to and from the CBus or the PLI interfaces.

The port is controlled by a four-phase clock generator located on
the CBus/data mover module. One microcycle normally requires 270
ns (see Chapter 5, section 5.2, for details).

1.1.3 H4000 Transceiver
This section gives a brief overview of the H4000 Transceiver. For
a full description on interfacing and operational theory, see the
H4000 technical manual (Digital P.N. EK-H4000-TM-001)

.

The basic functions of the H4000 are as follows:

Transmit data from the controller (NIA) onto the coaxial
cable

Receive data (including data it is transmitting) from the
cable

Detect collision conditions and notify the controller.

1-6

The transceiver also has circuitry to prevent internal problems
from affecting the Ethernet (no faulty node can be allowed to
affect the network adversely)

,

1.1.3.1 Transmit Function — The transmitter amplifies data on
the transceiver cable pair and transmits it onto the coaxial
cable. A squelch circuit ensures that transitions on this pair are
valid Ethernet 10 megabit-per-second Manchester encoded signals
(not random noise) before transmitting onto the coaxial cable.

1.1.3.2 Watchdog Timer Function — When the squelch circuit in

the transmitter opens (permitting data to be transmitted) , a

watchdog timer circuit is enabled. This timer ensures that, in the
event of a controller or transceiver runaway, the transmitter will
be disabled within approximately 50 ms. This protects the Ethernet
from being "hung." Digital's H4000 watchdog timer is triply
redundant, for enhanced protection and reliability.

1.1.3.3 Collision Presence Function — A collision sense circuit
determines if more than one transceiver is simultaneously
transmitting on the coaxial cable. A low-pass filter, which
extracts the dc component of the signal on the coaxial cable, is
used to make the collision determination.

1.1.3.4 Collision Presence Test Function (Heartbeat) — At the
end of each normal transmission, the collision presence oscillator
is turned on for a short duration (pause about 360 ns and on for
about 400 ns) to test the collision presence circuit. Its absence
should warn the controller (NIA) that the collision-sensing
circuitry in the H4000 may be faulty.

1.1.3.5 Receive Function — The receiver amplifies the data
received from the coaxial cable and retransmits it onto the
receive pair of the transceiver cable. Squelch is provided to
ensure that the receiver is enabled only when valid Ethernet
signals are present on the coaxial cable.

1.1.3.6 DC to DC Converter — The H4000 has a dc-dc converter to
convert the +12 V to the -5.2 V and -10.2 V required by the
transceiver. The converter also provides electrical isolation
between the controller and the transceiver circuits and the
coaxial cable, further protecting the Ethernet from node faults.

1.1.3.7 Coaxial Cable Connection — The H4000 electronics module
is custom fit into the casing, which also acts as the tap into the
coaxial cable. The tap requires that the coaxial cable be
preconditioned by drilling two small holes (opposite each other)
into the outer jacket and braid.

An installation kit (H4090-KA) is available, which contains all
the necessary parts, tools, and instructions needed to install the
H4000.

1-7

The tap is designed to be reusable up to five times, providing
that certain conditions are met (see Chapter 3, section 3.4,
Installation Procedure, and Appendix A and Appendix B) .

1.1.3.8 Transceiver Cable Connections — The transceiver is
equipped with a 15-pin D connector, meeting the Ethernet
specification. The H4000 transceiver pin assignments are given in

Table 1-1.

Table 1-1 H4000 Pin Assignments

Pin Signal Name

1 Transceiver cable shield
2 Collision presence +
3 Transmit +
4 (reserved)
5 Receive +
6 Power Return
7 (reserved)
8 (reserved)
9 Collision presence -

10 Transmit -

11 (reserved)
12 Receive -

13 Power
14 (reserved)
15 (reserved)

1.2 ETHERNET SPECIFICATION OVERVIEW
This section gives a brief overview of the Ethernet specification.
A full description of the data link protocol and physical details
of the communications medium can be found in the Ethernet
specification manual. This condensed description is provided here
to show how the data is packaged and handled.

Data on the serial NI cable must conform to the Ethernet
specification. The arbitration protocol used by the NI is Carrier
Sense Multiple Access with Collision Detect (CSMA/CD) . The service
provided is a datagram class in which the data packets are
delivered on a best-effort basis; no confirmation of delivery is

made, and no guarantee of sequentiality or non-duplication is
made. Higher levels of network software must provide these
services.

1.2.1 Packet Format
Packet format is illustrated in Figure 1-3. A packet (or frame)
contains the following:

1. Preamble - 64 bits (8 bytes)
2. Destination address - 48 bits (6 bytes)

1-8

3.

4.

5.

6.

Source address - 48 bits (6 bytes)
Type field - 16 bits (2 bytes)
Data field - (46 bytes minimum, 1500 bytes maximum)
Cyclic redundancy check (CRC) field - 32 bits (4 bytes)

LSB

PACKET/FRAME'

MSB

PREAMBLE/
64

DEST.
ADDR
48

SRCE
ADDR.
48

TYPE
FIELD
16

MIN.
SPACING

CRC COVERS THESE FIELDS-

DATA FIELD

(8n)

CRC
32

INTERFRAME
SPACING

H9.6/is.

Figure 1-3 Ethernet Data Packet Format

Nodes (or stations) must be able to receive and transmit packets
on the coaxial cable according to the format and spacing as shown
in Figure 1-3. Each packet is a sequence of 8-bit bytes. The least
significant bit of each byte (starting with the preamble) is
transmitted first. The minimum packet spacing is 9.6 ms between
the end of one packet and the start of another.

1.2.1.1 Maximum Packet Size — 1526 bytes (8-byte preamble +
14-byte header + 1500 data bytes + 4-byte CRC) . The header is made
up of the destination and source addresses and the type field.

1.2.1.2 Minimum Packet Size — 72 bytes (8-byte preamble +

14-byte header + 46 data bytes + 4-byte CRC) . Any received bit
sequence smaller than the minimum valid packet (with minimum data
field) is considered to be a collision fragment and is discarded.
These small collision fragments are also called runts.

1.2.1.3 Preamble — This is a 64-bit synchronization pattern
(alternating Is and Os and ending in two consecutive Is)

.

Synchronization and stabilization occur during the preamble, and
two Is at the end indicate the start of coded data. If two
consecutive Os are detected, an error must have occurred, and the
receive link management component of the data link blocks all
further bits of the current frame.

1.2.1.4 Destination Address — A 48-bit field that specifies the
station(s) to which the packet is being transmitted. Each station
examines this field to determine if it should accept the packet.
The first bit (1 sb) transmitted indicates the type of address:

If the least significant bit (LSB) is a 0, the field contains
the unique address of the one destination station.

1-9

If the LSB is a 1, the field specifies a logical group of
recipients.

A special case is the broadcast (all stations) address, which
is all Is.

1.2.1.5 Source Address — This 48-bit field contains the unique
address of the station that is transmitting the packet.

1.2.1.6 Type Field — This 16-bit field is used to identify the
type of higher level protocol associated with the packet. This
field determines how the data field is interpreted.

1.2.1.7 Data Field — This field contains an integral number of
bytes ranging from 46 to 1500. (The minimum ensures that valid
packets will be distinguishable from collision fragments.)

1.2.1.8 Packet Check Sequence — This 32-bit field contains a
cyclic redundancy check (CRC) code. The CRC checks the address
(destination and source), type, and data fields. A simplified
explanation is to have both the transmitter and receiver (using
the same algorithm) calculate a 32-bit polynomial, based on the
covered data. The transmitter sends its CRC. The receiver composes
the CRC it calculated with the CRC it received. The two CRCs must
match; if not, an error has occurred.

1.2.1.9 Round-Trip Delay — The maximum 2800 meter end-to-end,
round trip delay for a bit is 51.2 ms.

1.2.2 Control Procedures
The control procedures determine how and when a host station may
transmit packets to the common cable. The main purpose is to
establish fair resolution of occasional contention among
transmitting stations. If multiple stations attempt to transmit at
the same time (transmission overlap) , the result is a collision.

NOTE
Only transmitting stations can recognize
a collision. Normal transmissions have an
ac component varying on a dc level, but
when two or more stations transmit at the
same time, the ac component varies about
a dc level that is approximately twice
the normal dc level. This activates the
collision detect signal.

1.2.2.1 Defer — A station must not transmit to the coaxial
cable when a carrier (message from another station) is present or
within the minimum packet spacing time after a carrier has ended
(9.6 n s) .

1-10

1.2.2.2 Transmit — A station may transmit if it is not
deferring. It may continue to transmit until the end of the frame
is reached or a collision is detected.

1.2.2.3 Abort — If a collision is detected, transmission of the
packet must stop and a jam (4-6 bytes of arbitrary data) is
transmitted to ensure that all other participants in the collision
also recognize its occurrence.

1.2.2.4 Retransmit — After a station has detected a collision
and has aborted, it must wait for a random retransmission delay,
defer as usual, and then attempt to retransmit the packet. The
random time interval is computed using the backoff algorithm given
in Section 1.2.2.5. After 16 transmission attempts, a higher level
(such as software) decision is made to determine whether to
continue or abandon the effort.

1.2.2.6 Backoff — Retransmission delays are computed using the
truncated binary exponential backoff algorithm, with the aim of
resolving contention fairly among as many as 1024 stations. Each
station has a 10-bit random number generator. After a collision,
each station looks at the first bit of its generator (a one-bit

a 1, transmit. If the bit is a 0, wait one
and transmit. This gives two contending
chance of success. If the second attempt
look at the first two bits of their

generators (a 2-bit window) and wait the indicated number of slot
times (0,1,2, or 3), thereby reducing the chance of collision to
25 percent. This procedure continues until each station is looking
at all 10 bits. Since the maximum random number is 1023 (10 bits)

,

retransmission attempts 10 through 15 use the entire 10-bit
number, representing some random number between and 1023.

window) . If the bit is
slot time (51.2 Msec)
stations a 50 percent
fails, both stations

1.2.3 Manchester Encoding
Manchester encoding is used on the coaxial cable. It has
percent duty cycle and ensures a transition in the middle of
bit cell (data transition) . The first half of the bit
contains the complement of the bit value, and the second
contains the true value of the bit. The data rate is
per second = 100 ns per bit cell (see Figure 1-4)

.

a 50
every
cell
half

10 megabits

BIT CELL

\^— 100 ns—
»j

Figure 1-4

HIGH=Ov

LOW=-2.05 V

Manchester Encoding

1-11

1.2.4 Carrier Sense
The presence of data transitions indicates that carrier sense is
present. If a transition is not seen between 0.75 and 1.25 bit
times since the center of the last bit cell, then carrier sense
has been lost (indicating the end of a packet).

Carrier sense is derived from any data transitions detected on
either the receive detect or collision detect circuitry within the
last 160 ns.

1.2.5 Transceiver Connections
Up to 100 transceivers may be connected to the coaxial cable. Each
transceiver has a built-in tap, which can be attached or removed
from a network while it remains in operation. The taps must be
attached only at the special points marked by the cable
manufacturer, at 2.5 meter intervals.

1.2.6 Transceivers
Individual transceiver devices depend on their manufacturers. They
have taps that provide the interface into the coaxial cable, and,
as a general rule, they have an interface to the host system via
shielded cable and a 15-pin connector. Transceivers provide the
host with the following signals (minimum standard type unit)

:

Shield connection
Power pair connection
Transmit pair connection
Receive pair connection
Collision pair connection
Remaining pins are reserved.

1-12

CHAPTER 2

IMPLEMENTATION

This chapter deals with various elements involved in the
implementation of the NI on large computer group (LCG) systems.
The NIA20 uses a queued I/O structure with the NIA20 handling the
actual I/O between the NI and KLIO memory. This structure involves
concepts and protocols new to LCG systems.

2.1 IMPLEMENTATION OVERVIEW
There are two mechanisms used in communication between the KLIO
(port driver) and the NIA20 port (port microprocessor) . In the
first, the port command and status register (CSR) can be read and
written by the KLIO over the EBus. The port can also use the EBus
to read and write KLIO memory. In the second method, the queued
protocol is used for both port control and data transfer. The CBus
is the data path to and from KLIO memory when the queued protocol
is used. The EBus is used for control and status information and
interrupts when using queued protocol.

In the queued protocol, the NIA20 port takes its instructions from
a doubly linked command queue in KLIO memory. Responses are put to
a response queue. The KLIO links commands to the tail of the
command queue, and the port removes commands from the head of the
queue and processes them. The port links command responses to the
response queue at the tail, and the KLIO removes entries from the
response queue at its head.

Other queues used by the port and the KLIO implement the NI data
transfer mechanisms. The use of these queues depends on the type
of protocol used to assemble the data. There are up to 16 protocol
type free queues (if all are enabled) and one unknown protocol
type free queue. The locations of the protocol-dependent free
queues are discussed in sections 2.2 and 2.3.1.

The free queues are used as repositories of queue entries (see
Figure 2-1) . When either the port or the KLIO needs an entry to
link to a queue, it gets the entry from the appropriate free
queue. When a queue entry has been processed by either the port or
the KLIO, the entry is put back into the free queue. Thus, the
total number of queue entries remains fixed.

FLINK

BLINK

RESERVED FOR SOFTWARE

QUEUE DATA

Figure 2-1 Queue Entry Format

2-1

Sometimes, the term process is used when explaining operations on
queues or commands. This convention will apply when the operations
are the same, whether the CPU or the port performs them.

2.2 QUEUE STRUCTURE
The queues used by the NIA20 are doubly linked lists of commands
and responses. The queues reside in KLIO physical memory and are
used by both the port driver software of the KLIO and the port
microcode.

Text data out, from the port driver to the port, appears after the
command portion of command queue entries. Text data in, from the
port to the port driver, appears after the response portion of
response queue entries. Status information may or may not have
appended data,

2.2.1 Queue Linkage
Each queue entry contains two pointers (see Figure 2-2). One, the
forward link (flink) points to the next queue entry. The other,
the backward link (blink) points to the previous queue entry (to
its flink) , Both pointers actually point to the flink of the next
entry, never to a blink.

QUEUE
PCB

QUEUE
ENTRY

QUEUE
ENTRY

Q1 FLINK FLINK FLINK"

Q1 BLINK BLINK
*

1 BLINK

OTHER
DATA

QUEUE
DATA

QUEUE
DATA

QUEUE QUEUE

QN FLINK
blNI MY tNlKY

u FLINK FLINK
QN BLINK

BLINK
*

1 BLINK

OTHER
DATA

QUEUE
DATA

QUEUE
DATA

Figure 2-2 Queue Linkage

Any entry on the queue can be accessed from any other entry by
using one or both of these pointers. The pointers are followed
from entry to entry until the desired queue entry is found. This
can be done in either direction from the original entry by using
either the flinks or the blinks to go through the queue.

2-2

The queues all originate in the port control block (PCB) . Both the
KLIO and the port gain access to queues through the PCB. The PCB,
located in KLIO physical memory, is used to control access to the
queues and to set up certain queue parameters.

The PCB entries for each queue do not have the same format as a
queue entry. There is no information field in the PCB entries for
a queue. The PCB entries are queue headers (see section 2.3.1).

2.2.2 Queue Interlocks
To prevent the KLIO and the NIA20 from accessing a queue at the
same time, there is an interlock word in the PCB associated with
each queue. To link an entry to a queue or to remove a queue
entry, the device performing the operation must first obtain the
interlock word.

If the queue is available, the interlock word is set to a value of
-1 (all Is) . When attempting to gain access to a queue, the
interlock word must be incremented and tested for a value of 0.
If the value after incrementing is 0, the interlock has been
obtained and the requesting process can manipulate the queue. If
the word is positive, the queue is interlocked by another process
and access is prohibited.

The interlock is only a "good will" access control mechanism.
There is no hardware interlock to prevent queue access by
processes that ignore the condition of the interlock. If two
processes manipulate the queue at the same time, linkage could be
lost, and the results would be unpredictable.

The queue should be interlocked only for the time required to
insert or remove an entry. When the process manipulating the queue
is complete, with the insertion or removal, it must leave the
interlock word with a value of -1.

2.2.3 Queue Locations
The PCB is used to anchor the queues at a known point in the host
memory and to provide certain initial parameters to the port. The
NIA20 (port) must be told, by the port driver, where the base
address of the PCB is located.

Before the NIA20 is initialized, the port driver must set up the
channel to transfer the base address of the PCB to the port by
setting up a channel command word (CCW) to transfer three words
starting with word 24 octal of the PCB.

The port driver must also build, in word 24 octal of the EPT, a
jump word to word 27 octal of the PCB. The contents of the CCW in
the PCB must specify a three-word forward data transfer and halt
command with a starting address of word 24 octal of the PCB.

2-3

At initialization, the port will start the channel with a CBus
Start, which reads the contents of these locations. This provides
the port with the base address of the PCB and two words not
currently defined, but reserved for future use.

Figure 2-3 shows the format of the
memory.

PCB as it appears in KLIO

COMMAND QUEUE INTERLOCK

COMMAND QUEUE FUNK

COMMAND QUEUE BLINK

RESERVED FOR SOFTWARE

RESPONSE QUEUE INTERLOCK

RESPONSE QUEUE FLINK

RESPONSE QUEUE BLINK

RESERVED FOR SOFTWARE

UNKNOWN PROTOCOL TYPE FREE QUEUE INTERLOCK

UNKNOWN PROTOCOL TYPE FREE QUEUE FLINK

UNKNOWN PROTOCOL TYPE FREE QUEUE BLINK

UNKNOWN PROTOCOL QUEUE ENTRY LENGTH

RESERVED FOR SOFTWARE

PROTOCOL TYPE TABLE STARTING ADDRESS

MULTI-CAST ADDRESS TABLE STARTING ADDRESS

RESERVED FOR SOFTWARE

ERROR LOGOUT

ERROR LOGOUT 1

EPT CHANNEL LOGOUT WORD 1 ADDRESS

EPT CHANNEL LOGOUT WORD 1 CONTENTS

PCB BASE ADDRESS

PIA ASSIGNMENT

RESERVED TO PORT

CHANNEL COMMAND WORD

READ COUNTERS DATA BUFFER STARTING ADDRESS

OCTAL

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

Figure 2-3 KLIO Memory PCB Format

Word 22 of the PCB is written by the port during initialization
time with the address of the EPT channel logout word 1, which the
port gets from the port driver software. Words 22 and 23 of the
PCB are used by the port during channel error recovery.

Word 23 contains the channel logout word 1 written by the port on
any kind of channel error detected during or immediately after a

direct memory access (DMA) transfer. The format of error word 3 is

shown in Figure 2-4, and Table 2-1 provides bit descriptions.

Word 24 octal of the PCB is the address of the first word of the

PCB; the NIA20 has no other way of finding the PCB.

2-4

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
I I I I I I I I I I I I I I

—

\—I—r—I—I—I—I—I—r—I—I—I—I—r—i—i

—

1
MEM
PE

-WC
=0

-ADR NXM
PE

J I L
T
LXE

T
SHORT
WC

LONG OVER
WC RUN

ADROFCURR
CCW+1

-I 1 1 1 1 1 1 1 I I
I

'
I J 1 L

Figure 2-4 Error Word 3 Format

Bits Name

01 MEM PE

02 -ADR PE

03 -wc=o

04 NXM

09 LXE

11 Long WC

12 Short WC

13 Overrun

Table 2-1 Error Word 3 Bit Descriptions

Description

Memory parity error

Not address parity error

Channel word count did not = when channel
did a store to EPT

Channel ref nonexistent memory

Error detected after port term transfer.
Channel aborts next transfer

Port completes transfer, but word count in
CCW not reached

Channel transferred data specified by CCW,
but port still has data

If device read, port sent data but channel
buffers were full

If device write, port requested data but
channel buffers were empty

Word 27 octal is reserved for the CCW, where the port writes a
CCW-style word over the EBus when it wishes to transfer data over
the KLIO CBus. The port driver is responsible for writing a
channel jump word into the appropriate EPT location corresponding
to the RH20 backplane slot (slot 5) where the NIA20 is installed.

Word 25 is always reserved for port microcode use. The port driver
should never write this location or depend on its value.

2-5

Word 30 of the PCB is a pointer to the beginning of the read

counter data buffer. This address is supplied by the port driver
software at initialization.

When the NIA20 is being initialized, the port driver must set up

the channel to transfer the contents of the PCB to the port. This
is done by setting up a CCW to transfer three words starting with
word 24 of the PCB, from KLIO memory to the channel. The port will
start the channel and read the contents of these locations. This
setup provides the port with the base of the PCB, and its physical
interrupt assignment (PIA)

.

Since the port will be using the channel to transfer large blocks
of data, the channel control logic will be writing logout
information into the executive process table (EPT) . An error that
the channel discovers will be reported in the usual manner via the

EPT. Normal operation of the port will generate many long word
count errors, due to incoming frames of indeterminate size. These
errors may be ignored.

Command queue and response queue locations are obtained directly
from the PCB. Use of the protocol type table (PTT) , (see Figure
2-5), multicast address table (MCAT) (see Figure 2-6), and unknown
protocol type free queue is less direct. Received datagrams will
be node address filtered prior to entry into the NIA receive
buffer. The buffered datagrams will be multicast filtered, if

their destination address is a multicast address. Protocol type
filtering determines which queue to use for handling the frame.

ENABLE
<1—
MBZ

15> <16-31>
PROTOCOL TYPE VALUE

FREED QUEUE HEADER ADDRESS 1

RESERVED FOR SOFTWARE 2

ENABLE
<1
MBZ

--15> <16-31>
PROTOCOL TYPE VALUE 1

3

FREED 1 QUEUE HEADER ADDRESS 4

RESERVED FOR SOFTWARE 5

ENABLE
<1 "
MBZ

—-15> <16-31>
PROTOCOL TYPE VALUE N M-2

FREEQ N QUEUE HEADER ADDRESS M-1

RESERVED FOR SOFTWARE M

Figure 2-5 Protocol Type Table Format

2-6

<0,

MULTI-CAST ADDRESS 0, WORD

MULTI-CAST ADDRESS 0, WORD 1

MULTICAST ADDRESS 1 , WORD

MULTICAST ADDRESS 1 , WORD 1

MULTICAST ADDRESS 2, WORD

MULTICAST ADDRESS 2, WORD 1

MULTICAST ADDRESS 3, WORD

MULTICAST ADDRESS 3, WORD 1

MULTICAST ADDRESS 4, WORD

MULTICAST ADDRESS 4, WORD 1

31 > <32:34><35>

MBZ

MBZ ENA

MBZ

MBZ ENA

MBZ

MBZ ENA

MBZ

MBZ ENA

MBZ

MBZ ENA

MULTICAST ADDRESS N-1 , WORD MBZ

MULTICAST ADDRESS N-1, WORD 1 MBZ ENA

MULTICAST ADDRESS N, WORD MBZ

MULTICAST ADDRESS N, WORD 1 MBZ ENA

Figure 2-6 Multicast Address Table Format

All received datagrams must pass address filtering in the
following manner: If the destination address is -1 (all Is), it is
a broadcast message and the port accepts it. If the destination
address has bit 47 a 0, it is a specific physical address. If this
specific physical address matches the port address, the port
accepts it. In both cases, the accepted datagram is filtered for
protocol type.

Protocol type filtering occurs as follows: When a datagram is
received, the protocol type is checked by the port against the
table of enabled protocol types. The PCB has the
address for the protocol type table. If a
table, the associated pointer is used to
store the received datagram. If a match is
queue entry is obtained from the unknown
queue anchored in the PCB.

starting
match is found in this
get the queue entry to
not found, the required
protocol type free list

If the datagram destination address has bit 47 a 1 (and not all
Is) it is a multicast address. Further address filtering occurs as
follows: The address is checked by the port against the table of
enabled multicast addresses. The PCB has the starting address for

2-7

the MCAT. If a match is found, protocol type filtering occurs. If

no match is found, the datagram was not intended for this port and

is discarded.

Both the PTT and MCAT have an enable bit. The bit must be set for

the entry to be considered valid. Both tables are arranged in

ascending order and both tables are allocated beginning on a

four-word block. The tables are cached within the port when the

appropriate command is issued.

2.3 QUEUE HANDLING
The port driver and the port modify the queue with the port driver
putting commands on the command queue and the port removing and

processing the commands. The port puts responses to commands on

the response queue and the port driver of the KLIO removes the

responses

.

When the port driver needs a queue entry, it removes the entry

from the appropriate free queue. It builds a command and links the

command to a command queue.

The port removes commands from the head of the command queue and

processes them. After processing, the queue entry containing the

command is either linked to the response queue or back to the free

queue.

2.3.1 Queue Headers
The PCB contains queue headers to anchor the command queue, the

response queue, and the unknown protocol type free queue. The PCB

also contains base pointers to the MCAT and the PTT.

Queue headers anchor a queue structure. A queue header may be

located in the PCB or in the host memory as a free-standing queue
structure (used by the PTT as the header for the different type

queues) . Queue headers are made up of a queue interlock word,

queue flink, queue blink, and a queue length word as shown in

Figure 2-7.

QUEUE INTERLOCK WORD

QUEUE FLINK

QUEUE BLINK

QUEUE ENTRY LENGTH

Figure 2-7 Queue Header Format

2-8

The queue entry length specifies the length, in words, of the
queue entries on the queue. This includes the flink, blink,
interlock and operation code words in addition to the data. Allentries obtained for a queue are of the same length.

The example shown in Figure 2-8 uses both the PCB queue headers
and a freestanding queue header.

PCB QUEUE
ENTRY

QUEUE
ENTRY

Q1 FLINK .|^ FLINK

f 1

FUNK

f

"

-*-

i

Q1 BLINK BUNK BUNK

Q1
INTERLOCK QUEUE i

' DATA i

QUEUE -

r DATA i

4 OTHER 4

i DATA ^

\
1

1

QUEUE
ENTRY

QUEUE
ENTRY

Qn FLINK FLINK ^ FLINK

<

t

t

Qn BLINK BLINK BUNK

Qn
INTERLOCK QUEUE i

DATA /

QUEUE »

DATA /

OTHER -

i RATA i

1

1

Figure 2-8 Use of Queue Headers

2.3.2 Entry Linking
To link an entry to the tail of a queue, the interlock word for
the queue must be obtained. Then the process uses the blink word
of the PCB to find the tail of the queue.

The flink of the entry at the tail is changed to point to the new
entry. The blink of the PCB is also changed to point to the new
entry. The flink of the new entry is set to point to the flink of
the PCB entry for the queue. The blink of the new entry is set to
point to the old tail entry.

When the new entry is linked to the queue, the process must then
release the queue interlock by setting it to -1.

An empty queue specified by its header at address H
Figure 2-9.

is shown in

2-9

00 35

H+1:

- FUNK
(POINTING TO ITSELF)

- BLINK

Figure 2-9 Empty Queue

If an entry at address A is inserted into an empty queue, the

queue is as shown in Figure 2-10.

00

A:

A+1:

35

- FUNK

- BUNK

Figure 2-10 Queue with Entry at Address A

If an entry at address B is inserted at the tail of the queue, the

queue is as shown in Figure 2-11.

00

H+1:

35

- FUNK

BUNK

00 35

A: B

A+1: H

- FUNK

-BUNK

00

B+1:

35

- FUNK

-BLINK

Figure 2-11 Entry at Address B at the Tail of the Queue

2-10

If an entry at address C
appears as in Figure 2-12.

is inserted at the tail, the queue

2.3.3 Entry Removal
To remove an entry from the head of a queue, the process must
obtain the interlock word for the queue. Then the process uses the
flink from the PCB to find the first queue entry.

The flink in the PCB is made equal to the flink of the entry. The
flink in the PCB is now pointing to the second entry on the list.

entry is then changed to point to theThe blink in the
flink in the PCB.

second

The queue entry has now been removed and the only pointers to the
entry are in the process that removed it. The process can then set
the interlock word in the PCB to -1 so that another process can
gain access to the queue. The process that removed the entry can
manipulate the data areas of the entry.

00 35

H: A

H+1: C

- FLINK

- BLINK

00 35

A: B

A+1: H

- FLINK

- BLINK

00 35

B: C

B+1: A

- FLINK

- BLINK

00 35

C: H

C+1: B

— FLINK

- BLINK

Figure 2-12 Entry at Address C at the Tail of the Queue

2-11

In the previous example, with the queue containing entries A, B,

and C, the entry at A can be removed, giving the queue illustrated
in Figure 2-13.

00 35

H: B

H+1: C

-FUNK

- BLINK

00 35

B: C

B+1: H

- FLINK

- BLINK

00 35

C+1:

FLINK

- BLINK

Figure 2-13 Queue Containing Entries A, B, and C, Where A Can
Be Removed

2.3.3.1 Buffer Segment Descriptors — A buffer segment descriptor

(BSD) is a construct that is convenient for the network software
(for example, DECnet) . It is used
memory and gives the software the
handling data to a message without
or creating overhead by copying
buffer

.

to describe a segment of KLIO
ability to append layering or
rearranging the entire message
the datagram from buffer to

A buffer consists of a list of physically contiguous segments of

memory. Different segments of a buffer are not assumed contiguous
and may be anywhere within the physical address space of the host.

It is assumed that different segments of a buffer are unique (that

is, they do not overlap) within a host. A buffer is described by a

list of BSDs.

Each BSD describes a single contiguous piece of a buffer. Each
descriptor is a four-word block, allocated on a four-word
boundary, and built by the driver in physical host memory. In each
of these blocks is a pointer to the next descriptor block (if

any) , a pointer to the segment of the buffer so described, and a

field indicating what packing mode the segment is in. In addition,
within each block is a field giving the size of the buffer
segment, in bytes.

2-12

A buffer is referenced by giving the physical address of the first
word of the first BSD in the chain of BSDs. This address is called
out in the send datagram command packet, when the flags byte of
that command indicates that BSDs are in use.

A flags bit in the command format for a send datagram command,
when clear, indicates that the datagram to be sent is in immediate
mode, meaning that the data to be transmitted follows the
destination address in the command queue entry. The same flags
bit, when set, indicates the use of a BSD.

BSDs are used whenever it is necessary to send different sections
of a message or when different programs build different sections
of the datagram — helpful for messages passing down the layers of
the network software.

2.3.3.2 Buffer Segment Descriptor Format
The BSD format is specified in Figure 2-14. The packing mode field
describes the packing mode of the buffer segment pointed to. The
packing modes, with the associated bit values are — Packing
mode = Industry compatible, and 1 — Packing mode = Reserved
(RSVD)

.

MBZ
<6>
PACKING MODE MBZ

MBZ

<12-35>
SEGMENT BASE ADDRESS

<12-35>
NEXT BSD ADDRESS

MBZ <20 35>
SEGMENT LENGTH

RESERVED FOR USE BY SOFTWARE

MBZ
<6>
PACKING MODE MBZ <12-35>

SEGMENT BASE ADDRESS

MBZ <12-35>
NEXT BSD ADDRESS

MBZ <20 35>
SEGMENT LENGTH

RESERVED FOR USE BY SOFTWARE

Figure 2-14 BSD Format

2-13

The segment base address field gives the physical address of the
buffer segment described. The buffer segment must begin on a whole
word boundary. The next BSD address points to the first word of
the next buffer segment descriptor in the chain. If the next BSD
field is 0, there is no next segment descriptor.

The segment length field gives the length in bytes of the buffer
segment pointed to.

It is standard use for BSDs to be built in the queue entries on
the command queues. BSDs must be allocated on a four-word
boundary. For incoming datagrams there is only BSD-type
processing.

2.4 COMMANDS AND RESPONSES
Communication between the port driver and the port is accomplished
by using command packets and response packets. A command is a

request from the port driver to the port. Placing a command on the
command queue initiates processing in the port.

A response is a packet from the port to the driver, informing it

of an event. The event may be one of the following:

An error occurred while processing a command. This always
causes a response.

A response to a command which had the response bit set in the
flags field. The port must send the driver a response if the
original command had the response bit set.

The reception of an incoming packet from the wire.

If the response queue is empty when an entry is added by the port,

a non-vectored interrupt is sent to the host (to indicate that the
driver look at the response queue) . If the response queue was not
empty, the entry will be seen by the driver as it sequentially
processes the queue.

After processing a command, the port always checks to see if

another exists on the command queue. If not, the port goes idle.

The port wakes up again when the port driver places a command in

the command queue, and writes the command queue available bit in

the control status register (CSR) with a 1 to indicate that a new
command is available.

The commands available to the port driver are listed below. The

port can build eight possible responses to the commands and can
generate one other response — for datagrams recieved from
Ethernet.

1. Send Datagram (SNDDG) causes an NI datagram to be built
and transmitted as an Ethernet packet. The command may or
may not use buffer segment descriptors. The port response

2-14

is datagram sent (DGSNT) . The format of the response, if
requested, follows the format of the command (i.e., BSD
or non-BSD)

.

2. Datagram Received (DGRCV) can be only a response,
notifying the port driver that the port has received a
packet over Ethernet. This response is always in BSD
format

•

3. Load Protocol Type Table (LDPTT) causes the PTT to be
internally cached by the port. The port response is
protocol type table loaded (PTTLD)

.

4. Load Multicast Address Table (LDMCAT) causes the MCAT to
be cached internally by the port. The port response is
multicast address table loaded (MCATLD)

.

5. Read and/or Clear Counters (RCCNT) causes all the event
counters kept by the port microcode to be read if the
response bit in the flags field is set. If bit 14 in the
flags field is set, all the counters are cleared. This
command is a performance monitoring and diagnostic
feature. The port response is counters read and/or
cleared (CNTRC)

.

6. Write PLI (WRTPLI) causes a PLI write function with the
specified control bits and data byte. This command is a
diagnostic feature. The port response is port link
interface written (PLIWRT)

.

7. Read PLI (RDPLI) causes a PLI read function with the
specified control bits. If a response is built for this
command, the data byte read from the PLI is returned.
This command is a diagnostic feature. The port response
is PLI read (PLIRD)

.

8. Read NI Station Address (RDNSA) reads the NI station
address from the NI link physical address ROMs. This
command also reports the state of several link mode bits.
The port response is NI station address read (NSARD)

.

9. Write NI Station Address (WRTNSA) writes the NI station
into the NI link address RAMs. Also sets the state of
several link mode bits. The port response is NI station
address written (NSAWRT)

.

2,4.1 Command and Response Formats
The following sections describe the format of the various commands
and responses that the port receives and produces.

2.4.1.1 Send Datagram (SNDDG) Command — To send a datagram, the
KLIO gets an entry from the associated free queue and builds the
datagram by putting the data into the queue entry. The queue entry

2-15

is then put onto the command queue as a send datagram (SNDDG)
command. The port de-links commands from the head of the command
queue and processes them. When the send datagram command reaches
the head of the queue it is processed by the port.

At the completion of the command SNDDG, the port microcode will
determine if it should build a response queue entry for this
command. If the response bit is set in the flags words, the port
will build a response entry. If the response bit is off for this
particular command, no response will be built unless an error
occurred during the processing or transmission of the packet. Any
error condition always causes the port to build a response packet.

The format of the response packet is similar to the send datagram
packet; the difference is that the status field is returned with a
non-0 value to indicate the conditions or type of failure. Refer
to Section 2.4.1.2 for a detailed description of all of the
allowable values for the status field. The response is called a
datagram sent response (DGSNT)

.

If no response is to be built, the queue entry containing the
SNDDG command will be linked to the tail of the associated free
queue by the port. The queue entry is then available for reuse.

A particular format applies if the flags byte specifies BSD usage.
If the BSD format is used, data bytes are transmitted onto the NI
wire from the BSD left to right. That is, for a given word, the
data in bits 0-7 is transmitted first, the data in bits 8-15 is
transmitted second, the data in bits 16-24 is transmitted third,
and so on. This left-to-right format is the norm for all data
transmitted from a BSD.

NOTE
Buffers and text length fields must
always describe full bytes. It is illegal
for a buffer to terminate in the middle
of a byte. The result, if this
restriction is violated, is undefined. It
is legal for a BSD to terminate in a
half-byte, under certain conditions.

The format of this command as a command queue entry is specified
in Figures 2-15 and 2-16.

The command status fields are zero. The response to a command will
have a non-zero status field (see DGSNT response for bit
definitions)

.

The operation code for a send datagram command is a 1.

The format of the flags field for all commands is shown in Figures
2-17 and 2-18. There are two formats; one for the SNDDG command
and response (and the DGRCV response) , and one for all other
commands and responses.

2-16

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0-19>
MBZ

<20-35>
LENGTH OF TEXT DATA

MBZ
<16-31>
PROTOCOL TYPE VALUE

FREEQ HEADER ADDRESS

HIGH ORDER DESTINATION

LOW ORDER DESTINATION

BSD BASE ADDRESS

QUEUE END

Figure 2-15 SNDDG Command Format (BSD)

The 0-pack (packing format) field defines the packing format for
non-BSD datagrams: = Industry compatible, 1 = Reserved.

When the ICRC is set, the port driver has appended a
four-character CRC at the end of the datagram. This CRC is to be
used instead of the internally generated CRC. This feature must be
used in the transmission of self-directed datagrams, because the
design of the NI adapter shares the CRC generator/checker between
receive and transmit circuits. The length fields in the command
packets do not reflect the addition of the four extra characters.

When the pad field is set, the port will pad packets to be sent
that are less than the Ethernet minimum size by appending the
remaining bytes with zeros to the minimum packet size. In
addition, two bytes indicating the valid data length will be
prepended to the text data. These length bytes are transmitted
low-order byte first, and indicate the number of actual text bytes
(not including padding) that occur within the packet. The
two-length bytes are always transmitted when padding is enabled,
whether or not padding was necessary for a particular packet
transmitted. When clear, the port does not do such padding. If a
packet is padded, it will be padded with zeros. If a packet is
presented to the port without this bit set, and it is less than 46
bytes, an error response for a runt (less than the minimum legal
size of 46 bytes) packet is generated. Packets presented that are
larger than the maximum Ethernet packet size always cause a length
error and generate an error response packet.

2-17

QUEUE FUNK

QUEUE BUNK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0-19>
MBZ

<20-35>
LENGTH OF TEXT DATA

MBZ
<16-3I>
PROTOCOL TYPE VALUE

FREEQ HEADER ADDRESS

HIGH ORDER DESTINATION

LOW ORDER DESTINATION

TEXT DATA

TEXT DATA 1

TEXT DATA 2

TEXT DATA N-1

TEXT DATA N

QUEUE END

Figure 2-16 SNDDG Command Format (Non-BSD)

PACK ICRC PAD RSVD BSD RSVD RSVD RESP

Figure 2-17 Send Datagram

RSVD RSVD RSVD RSVD RSVD RSVD CLRCTR RESP

Figure 2-18 Non-Send Datagram

2-18

If the BSD bit is 1, the datagram is using the BSD format
described under the SNDDG command. If the bit is 0, the datagram
is in immediate mode; that is, the data to be transmitted follows
the destination address in the queue entries.

Bit 6 is reserved for a send datagram and non-send datagram. This
field is valid only for the read counters command. If this bit is
set, all the counters will be cleared after their values are
reported in the response packet for this command.

When the response bit is 1, the port will always build a response
after processing the command.

The FREEQ header address indicates the free queue from which the
queue entry was obtained so that, when done, it can be put back in
the correct free queue.

The high or low destination words specify the destination address
of the packet. Their format is described in Figure 2-19. Note that
byte is the first byte transmitted on the NI, and byte 5 is the
last byte transmitted. Bit 31 of the low-order destination is
therefore the multicast address bit.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

BYTEO

J I L

T—I—

r

BYTE 1

J I 1 ' '

T T T—I—r—I—

r

BYTE 2

J I L J L

T 1 f
1—

r

BYTE 3

J I I I
I '

T 1—

r

MBZ
J I L

LOW

MULTICAST BIT 7

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35^ ' ' ' ' ' "l ' ' I I I I I—I—I—I—I—I—I—r—i—I—1—I—I—I—r—I—I—I—I—r—i

—

BYTE 4

J—I—I—I I L

BYTE 5

I I I J L

MBZ
J I I l__ J L

HIGH

Figure 2-19 Destination Address Format

2.4.1.2 Datagram Sent (DGSNT) Response — A response to the
SNDDG command is built if 1) an error occurred during processing
of the command, or 2) the response bit of the flags field of the
original datagram packet was set. The format of the returned
packet is shown in Figure 2-20. The format of the response follows
the format of the original command. Thus, if the BSD bit of the
flags field was on, then the response is in BSD format as well.
Figure 2-20 shows the format for a non-BSD packet:

2-19

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0-19>
MBZ

<20-35>
LENGTH OF TEXT DATA

MBZ
<16-31>
PROTOCOL TYPE VALUE

FREEQ HEADER ADDRESS

HIGH ORDER DESTINATION

LOW ORDER DESTINATION

TEXT DATA

TEXT DATA 1

TEXT DATA 2

TEXT DATA N-1

TEXT DATA N

Figure 2-20 DGSNT Response Format (Non-BSD)

The format of a response for a send datagram command packet with
the BSD bit of the flags field set is shown in Figure 2-21.

The format of the individual words and the bits therein conforms
to the information given for the SNDDG command format.

The status field shown in Figure 2-22 is used by the port to
report the status of all completed commands. This field appears in

the response word of the queue entry. When valid, this field
indicates the logging of an exception event.

When the CRAM PE field is set to 1, the forthcoming read counter
response is due to execution of a planned CRAM parity error.

When the send/receive bit is 0, an error occurred on receive;
receive failed. When this bit is 1, an error occurred on transmit;
transmission failed.

2-20

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0-19>
MBZ

<20-35>
LENGTH OF TEXT DATA

FREEQ HEADER ADDRESS

HIGH ORDER DESTINATION

LOW ORDER DESTINATION

MBZ <16-31>
PROTOCOL TYPE VALUE

BSD BASE ADDRESS

TEXT DATA N

Figure 2-21 DGSNT Response Format (BSD)

CRAM
PE

SEND/
RECEIVE

ERROR TYPE EftROR

Figure 2-22 Status Field from Queue

When the error bit is 0, the status field has no meaning and must
be zero (MBZ). When this bit is 1, the status field is reporting
an error event. The definition of the error type fields, and of
the direction field, comes into effect.

The error type field indicates the error event being logged. The
field is set according to Table 2-2.

2.4.1.3 Datagram Received (DGRCV) Response — When a datagram is
received, a response packet is built. The format of a received
datagram is shown in Figure 2-23.

The operation code field for a received datagram is 5.

2-21

Table 2-2 Error Log and Type

Bit Valae
(Octal) Event Type Note

00 Excessive collisions 2
01 Carrier check failed (carrier lost) 2
02 Collision detect check failed
03 Short circuit 4
04 Open circuit 4
05 Frame too long
06 Remote failure to defer (late collision) 4
07 Block check error (CRC error)
10 Framing error
11 Data overrun (NIA buffer space exhausted)
12 Unrecognized protocol type
13 Frame too short 3
30 Channel error WC not equal zero
31 Queue length violation 5
32 Illegal PLI function
33 Unrecognized command
34 Buffer length violation 1
35 Reserved
36 Transmit buffer parity error
37 Internal error

NOTES:

1. For a transmission, this error means that the length
information in the transmitted BSD was inconsistent, such as
when the length field of the transmitted datagram does not
match the total length of the BSDs to be transmitted.

2. When this event is being logged, bits 26-35 of the opcode word
in the response packet of the queue entry become the time
domain ref lectometry (TDR) reference number obtained from the
NIA when the error occurred. This indicates the time, in 100
ns tics, from the time the transmission started until the
error event was detected by the NIA hardware.

3. This error occurs only when padding of the transmitted frame
is disabled, and the frame length is smaller than the smallest
legal Ethernet frame size of 46 data bytes (64 bytes including
all physical channel protocol). No indication is given if the
frame size would be a runt, and padding is enabled. In that
case, the frame is padded as noted in the description of the
PAD flag in Figure 2-17.

4. These errors are also called late collision errors. A late
collision error is defined as a collision that occurs after
the slot time (51.2 m sec) has expired. The slot time is the
maximum length of time for a signal to propagate from one end
of an NI network and back. All other nodes on a network should
observe that a station is transmitting and they should defer.

2-22

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE

<0-19>
MBZ

MBZ

<20-35>
LENGTH OF TEXT DATA

HIGH ORDER DESTINATION

LOW ORDER DESTINATION

HIGH ORDER SOURCE

LOW ORDER SOURCE

MBZ <16-31>
PROTOCOL TYPE VALUE

BSD BASE ADDRESS

(BUFFER SEGMENT DESCRIPTOR)

MBZ <6>
PACKING MODE MBZ

MBZ

<12-35>
SEGMENT BASE ADDRESS

<12-35>
NEXT BSD ADDRESS

MBZ <20 35>
SEGMENT LENGTH

RESERVED FOR USE BY SOFTWARE

TEXT DATA

TEXT DATIA 1

TEXT DATA 2

TEXT DATA N-1

TEXT DATA N 1

Figure 2-23 DGRCV Response Format

5. This error indicates the host memory free space was exhausted
while there was data remaininq in the NIA receive buffer.

The text data field contains the length of the transferred text
data in bytes, plus four bytes to include the cyclic redundancy
check bytes at the end of the packet. A received packet has
appended to it the CRC transmitted by the transmitting node. The
length value does not include the packet header. This is the
length of the data portion of the datagram. The packet length
field always indicates the actual number of bytes in the packet,
even if the packet is too long, or if an error of some sort
occurs. The received CRC bytes are placed into the host memory
buffer immediately following the end of memory data to allow a

software double-check of packet integrity.

2-23

The protocol type field contains the protocol type of the received
packet. The format for this field is the same as that for the
SNDDG command, and the protocol type field of a PTT entry.

The destination high/low field contains the destination port
address as received from the NX wire. This field is included so
that messages received for a multicast address (by the port) can
be distinguished (by the driver) from messages received for the
physical address of the port.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35—1—1—1—1—1—1—1

—

BYTEG
1 1 1 1 1 1 1

—1
1 1 1 1 1 1

—

BYTE 1

1 1 1 1 1 1 1

—1
1—

1

1 1 1—1

—

BYTE 2

—1 1 1 1 1 1—1

—

—1—1—1—1—1—r—T

—

BYTE 3

1 1 1 1 1 1 1

—1 1 1

—

MBZ
1 X- i..-

LOW

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
1 1 T 1 1 1 1

BYTE 4

1 1 1 1 1 1 1

—1—1
1 1—

1

1 1

—

BYTE 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1

MBZ
-L__l 1 1 1—

1

1 1 1—1—

1

1

—

HIGH

Figure 2-24 Originating Port Address Format

The source high/low field contains the originating port address.
The format of this address is given in Figure 2-24, where byte
is the first byte received over the NX wire. Byte 5 is the last
byte received.

Text data contains the first byte of the received packet. The
text portion of a received datagram is always assembled by the
port left to right. That is, the first byte of text received will
be placed into bits 0-7 of the first text word, the second byte of
text received will be placed into bits 8-15, the third into bits
16-23, the fourth into bits 24-31, and so on. This occurs for all
data modes.

For a description of the BSD base address refer to Section

2.4.1.4 Load Protocol Type Table (LDPTT) Command — When this
command is accepted by the port, the PTT specified will be cached
internally to the port local RAM storage memory. Note that the
protocol free queue addresses are cached internally as well.
Therefore, the free queue headers cannot change addresses unless
this command is issued as well. The addresses specified in this
table point to the free queue header, not to the first queue entry
of the queue chain.

The address of the PTT specified in the PCB may not be altered in
a running port without initialization.

The format of the LDPTT command is specified in Figure 2-25.

2-24

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

Figure 2-25 LDPTT Command Format

The operation code for this command packet is 3. When the command
is accepted by the port, the PTT is internally cached. There is no
additional queue data.

If the LDPTT command is not executed before enabling the port
after initialization (by setting bit 31 of the CSR) , then no
protocol types are enabled. Any packets that pass the receive
address filter will be linked to the unknown protocol type queue.

2.4.1.5 Protocol Type Table Loaded (PTTLD) Response — The LDPTT
command signals completion by building a response and putting that
response at the end of the response queue. The format of that
response is given in Figure 2-26.

The driver should not assume that a protocol type has been enabled
until this response is received from a LDPTT command. The opcode
and flags fields are not modified by this response (same as for
the command)

.

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

Figure 2-26 PTTLD Response Format

2.4.1.6 Load Multicast Address Table (LDMCAT) Command — When
this command is issued, the multicast address table (MCAT) is
loaded in the port from the table whose address is specified by
the PCB, At initialization, no multicast addresses are enabled to
allow upper layers of software (users) to initialize before
enabling.

2-25

For the driver to add or delete a multicast address to or from a

running port, a MCAT is built in memory at the address pointed to
by the PCB MCAT base address pointer with the addresses in
increasing numerical order. Then the LDMCAT command is issued.
When the response to this command is returned, the multicast
addresses specified in this table are in effect.

The table is loaded into the internal cache of the port. This
table must follow the format stated for the MCAT (see Figure
2-27) . This table must be loaded before address checking will take
effect. The operation code for this command is 2. There is no
other queue data.

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

Figure 2-27 LDMCAT Command Format

2.4,1.7 MCAT Loaded Response LDMCAT — The successful completion
of the LDMCAT command is signalled by the building of the
following response on the response queue. The format of the
response is shown in Figure 2-28. The driver can assume that the

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

Figure 2-28 MCATLD Response Format

specified MCAT has been loaded only after it has received this
response packet. The command opcode and flags fields are not
modified by this command.

2-26

2.4.1.8 Read and Clear Performance Counters RCCNT Command — This
command reads the performance counters, returning their value in
the read counters block pointed to by PCB +30, and clears the
performance event counters as specified by a bit (14) in the flags
field.

The format of the command queue entry to accomplish this is given
in Figure 2-29.

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-13>
FLAGS

<14>
CLRCTR <15>

<16-23>
OPCODE MBZ

Figure 2-29 RCCNT Command Format

The operation code for this command packet is 4.
built if the response bit in the flags word is set.

A response is

Datagram discarded counters are kept for each of the protocol type
queues, and for the unknown protocol type queue. Thus, the driver
can get an indication when a protocol type free queue is exhausted
by execution of this command. A counter is returned for every
protocol type entry allowed in the PTT. Those counters
corresponding to protocol type entries that are not enabled are
returned with a value of zero.

2.4.1.9 Counters Read or Cleared (CNTRC) Response — If the
response bit of the flags field of the original command packet is
on, then a response to the above command is built. The response

By combining the read and clear commands, the driver knows that
the event counters are not skewed when a clear command is issued.
In the following list, note that a packet is not received unless
it passes the receive address filter.

BR — Bytes received. This counter represents the number of 8-bit
data text characters received as datagrams over the NI. This
includes maintenance operation protocol (MOP) packets, explained
in section 2.6.

BX — Bytes transmitted. This counter represents the number of 8
bits data text characters transmitted successfully as datagrams
over the NI.

2-27

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

ex

FR

FX

MCBR

MCFR

FIXD

FXSC

FXMC

XF

XFBM

CDCF

RF

FROM

DDUPT

DDPT1

DDPT2

DDPT3

DDPT4

DDPT5

DDPT6

Figure 2-30 CNTCL Response Format
(Sheet 1 of 2 sheets)

PR — Frames received. This counter represents the number of
frames (packets or datagrams) that have been received over the NI

wire.

FX — Frames transmitted. This counter represents the number of
frames that have been successfully transmitted over the NI wire.

2-28

DDPT7

DDPT8

DDPT9

DDPT10

DDPT1

1

DDPT1

2

DDPT1

3

DDPT14

DDPT1

5

DDPT1

6

URFD

DOVR

SBUA

UBUA

PLI REG RD PAR ERROR PLI PARITY ERROR

MOVER PARITY ERROR CBUS PARITY ERROR

EBUS PARITY ERROR EBUS QUEUE PARITY ERROR

CHANNEL ERROR SPUR CHANNEL ERROR

SPUR XMIT ATTN ERROR CBUS REQ TIMEOUT ERROR

EBUS REQ TIMEOUT ERR CSR GRNT TIMEOUT ERROR

USED BUFF PARITY ERR XMIT BUF PARITY ERROR

RSVD FOR UCODE RSVD FOR UCODE

RSVD FOR UCODE RSVD FOR UCODE

RSVD FOR UCODE RSVD FOR UCODE

17 18 35

MR-13873

Figure 2-30 CNTCL Response Format
(Sheet 2 of 2 sheets)

MCBR — Multicast bytes received. This counter represents the
number of 8-bit bytes received in packets with the multicast bit
set in the destination field. This includes broadcast.

MCFR — Multicast frames received. This counter represents the
number of frames that were received with the multicast bit in the
destination field set. This includes broadcast.

FXID — Frames transmitted, initially deferred. This counter
represents the number of frames transmitted that had to defer to
other traffic on the NX wire before transmission.

2-29

FXSC — Frames transmitted, single collision. This counter
represents the number of frames that were successfully
transmitted, and which collided with another transmission exactly
once.

FXMC — Frames transmitted, multiple collisions. This counter
represents the number of frames that were successfully
transmitted, and which collided with another transmission more
than once.

XF — Transmit failures. This counter represents the number of
frames that were not successfully transmitted. This counter is
incremented for excessive collisions, parity errors, and so on.
This counter is associated with the XFBM, which notes occurrence
of error classes.

XFBM — Transmit failure bit mask. This counter gives the
accumulated reasons for transmission failures. The bit meanings
are given in Table 2-3.

Table 2-3 Transmission Failure Bit Mask Assignments

Bit No. Reason for Failure

0-23 Unassigned

24 Loss of carrier

25 Transmit buffer parity error

26 Remote failure to defer

27 Frame too long

28 Open circuit

29 Short circuit

30 Carrier check failed (collision detect
check failed)

31 Excessive collisions

CDCF — Collision detect check failed. This counter gives the
number of times that the collision detect check failed after a
transmit. This is the number of times that heartbeat failed to
assert after a transmit ended. This counter has meaning only if
the H4000 mode bit is set.

2-30

RF — Receive failures. This counter gives the number of received
frames whose reception ultimately failed. This counter is
associated with the RFBM counter, which marks occurrence of the
various error types.

RFBM — Receive failure bit mask. This counter gives the
accumulated reasons for receive failures. The bit definitions are
given in Table 2-4.

Table 2-4 Reception Failure Bit Mask Assignments

Bit No. Reason for Failure

0-26 Unassigned

27 Free list parity error

28 Data overrun (no free buffers)

29 Frame too long

30 Framing error

31 Block check error

DDUPT — Datagram discarded for unknown protocol type. This
counter keeps track of the number of datagrams discarded for the
unknown protocol type free queue. Any time a datagram is discarded
with an unrecognized protocol type, this counter is incremented.

DDPTl to DDPT16 — Datagram discarded for protocol type N. These
counters keep track of the number of datagrams discarded for each
of the protocol type free queues. When a datagram is discarded
because of no available free space, one of these counters is
incremented, if the protocol type was enabled. There are as many
of these counters as needed to support the number of protocol
types allowed in the NX configuration register.

URFD — Unrecognized frame destination. This counter has no ^
meaning for the NIA20 and will always be reported as zero.

DOVR — Data overrun. This counter represents the number of
packets incorrectly received due to buffer space in the NIA being
exhausted. Such packets are discarded.

SBUA — System buffer unavailable. This counter has no meaning for
the NIA and will always be reported as zero.

2-31

UBUA -- User buffer unavailable. This counter represents the total
number of packets discarded because a free queue was exhausted.
This number is the total of 1) the datagram discarded for protocol
type N counters and 2) the datagram discarded for unknown protocol
type counter.

Words 47-55 are the NIA20 port recoverable errors. These counters
have an initial threshold of 5, set during port initialization.
This threshold count is variable and can be set via a write
station information command.

RSVD — Reserved For microcode. These counters are reserved for
the port microcode and for the present will be returned as zeros.

2.4.1.10 Write Port Link Interface (WRTPLI) Command — This
command causes a PLI write cycle for the indicated operation to be
performed.

CAUTION
Execution of illegal or random commands
will compromise the functionality of the
interface in an indeterminate fashion. It
is recommended that the port not be
executing meaningful commands when this
command is issued. This command is for
diagnostic purposes only.

The WRTPLI command format is shown in Figure 2-31.

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

MBZ <20-23>
CONTROL MBZ

<28-35>
PLI DATA

Figure 2-31 WRTPLI Command Format

The operation code for this packet is 6. If the response bit in
the flags word is on, a response confirming the correct execution
of this command will be built and placed on the response queue
anchored in the PCB. This command, along with RDPLI, gives the
port driver the same visibility as the port itself into the port
link interface.

2-32

The control field specifies the PLI control bits to be put onto
the PLI when the write cycle is done. The PLI data field is light
bits wide. The use of these control bits will be explained in
Chapters 4 and 5. The command codes map into the PLI commands
shown in Table 2-5.

as

Table 2-5 Command Code Values and Functions

Value (octal) Function

00
01
02
03
04
05
06
07
10
11
12
13

Illegal
Receive buffer to transmit buffer
Write free buffer list
Read receive buffer
Write transmit action (4 command group)
Reset receive attention
Enable link control
Disable link control
Write address register
Write transmit buffer
Write register
Clear receive buffer

2.4.1.11 Port Link Interface Written (PLIWRT) Response — The
WRTPLI command results in a response if the response bit of the
flags field of the original packet was set. The driver is assured
that the port interface has executed this command only after the
response has been received. If built, the response has the format
shown in Figure 2-32.

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

MBZ

<16-23>
OPCODE

<20-23>
CONTROL

MBZ

MBZ <28-35>
PLI DATA

Figure 2-32 PLIWRT Response Format

2.4.1.12 Read Port Link Interface (RDPLI) Command — When
executed, this command causes a read PLI cycle to be executed,
using the control bits specified. The data is returned in the
response queue entry.

2-33

The data for this command is returned in the response entry built

if the response flag is set when the command is executed.

The format of this command is specified in Figure 2-33.

<0-7>
STATUS

QUEUE FUNK

QUEUE BUNK

RESERVED FOR SOFTWARE

<8-15>
FLAGS

MBZ

<16-23>
OPCODE

<20-23>
CONTROL

MBZ

MBZ

Figure 2-33 RDPLI Command Format

2.4.1.13 Port Link Interface Read (PLIRD) Response — The format

of the response given to this command if the flags response bit is

on is specified in Figure 2-34. The operation code for this packet

is 7. This command does not generate an NX packet. Through this

command, the port driver can read any quantity that the port

processor itself can read over the PLI.

QUEUE FUNK

QUEUE BUNK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

MBZ

<16-23>
OPCODE

<20-23>
CONTROL

MBZ

MBZ

MBZ

<28-35>
PLI DATA

Figure 2-34 PLIRD Response Format

The four control bits specify the state of the control bits to be

used during the read cycle. The use of these control bits will be

explained in Chapter 4. The command codes map into PLI commands as

defined in the Table 2-6.

2-34

Table 2-6 Control Bit Values and Functions

Value (octal) Function

00
01
02
03
04
05

Illegal
Read register

receive buffer
used buffer list
transmit status
receive status

Read
Read
Read
Read

If the command selected is not defined in Table 2-6 as a legal
function, a response will be generated with the status field set
illegal PLI function.

The PLI data field (and the word that contains it) is present only
in the response built for this command — occurring when the
response bit in the flags field is set. In the response, this
field is the data that was read from the PLI by the execution of
the RDPLI command.

CAUTION
It is recommended that the driver not
execute this command while other commands
are pending or while packet reception is
enabled. Careless use of this command can
cause the normal port functionality to be
compromised.

2.4.1.14 Read NI Station Address (RDNSA) Command — When executed,
this command causes the NI station address to be read from the NI
link module. In addition, some status mode bits are read. This
data is returned in the response queue entry, if specified by the
response bit in the flags field of the command.

The format of this command is specified in Figure 2-35. The
operation code for this packet is 8. If the response bit in the
flags word is on, a response confirming the correct execution of
the command will be built and placed onto the response queue
anchored in the PCB.

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

Figure 2-35 RDNSA Command Format

2-35

2.4.1.15 NX Station Address Read (NSARD) Response — If built, the

response to the RDNSA command is shown in Figure 2-36.

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0
HIGH ORDER Nl ADDRESS

-31> <32-35>
MBZ

LOW ORDER Nl ADDRESS MBZ

<0-—
MBZ

-31> <32>
ACRC

<33>
AMC

<34>
H4000 MODE

<35>
PRMSC MODE

<0—
MBZ

-15> <16 23>
UCODE VERSION

<24-29>
MCAT

<30-35>
PTT

Figure 2-36 RDNSA Response Format

The high and low order NX address value is the physical station
address stored in the physical address RAM on the NX link board.
Xt corresponds to the address of the NX link.

The ACRC bit indicates whether the NX link will discard incoming
packets with CRC errors. Xf set, the link will accept all incoming
packets with CRC errors and place them on the unknown protocol
type free queue if an entry is available. Xf reset, the link will
discard all incoming packets with CRC errors. The initial value of

this bit is 0.

The AMC bit indicates whether the NX link will accept all

multicast packets (if set) or perform normal multicast address
filtering (if reset) . The initialization value of this bit is 0.

The H4000 mode bit shows its current state. This bit, if set,

enables the heartbeat detection checking for the H4000 type NX bus
tranceiver. The initialization value of this bit is 0.

The PRMSC mode bit, if set, indicates that the link is operating
in promiscuous mode. All packets detected on the wire will be

interpreted as being addressed to this node. The initialization
value of this bit is 0.

The Ucode version field gives the version of microcode loaded into
the port.

2-36

The MCAT field gives the numbei: of MCAT entries allowed.

The PTT field gives the number of PTT entries allowed.

2.4.1.16 Write NI Station Address (WRTNSA) Command — When
executed, this command sets the physical address RAM on the NI
link board, as well as the several mode bits for the data link
operation.

A response for this command is built only if the response bit in
the command packet flags byte is on. The format of this command is
Illustrated in Figure 2-37. The operation code for this command is
9.

QUEUE FLINK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0 31> <32-35>
MBZHIGH ORDER NI ADDRESS

LOW ORDER NI ADDRESS MBZ

<0 31 >
MBZ

<32>
ACRC

<33>
AMC

<34>
H4000 MODE

<35>
PRMSC MODE

<0 23>
MUST BE ZERO

<24
RETRIES /

35>
\LLOWED

Figure 2-37 WRTNSA Command Format

The high/low order NI address is written to the physical address
RAM on the NI link board. After the command is completed, the NI
link will accept packets with the physical address specified.

The ACRC bit indicates whether the NI link will discard incoming
packets with CRC errors. If set, the link will accept all incoming
packets with CRC errors and place them on the unknown protocol
type free queue if an entry is available. If reset, the link will
discard all incoming packets with CRC errors. The initialization
value of this bit is 0.

Setting the AMC bit puts the port into the receive all multicast
mode. When enabled, all multicast packets received are passed
the receive address filter.

by

2-37

The H4000 mode bit, if set by the driver, will enable H4000 mode
— enable heartbeat detection checking by the transceiver.

If PRMSC mode is set by the driver, all packets seen on the NX

cable will pass the received address filter. This is a diagnostic
feature.

CAUTION
Turning on this mode can cause
significant degradation of system network
performance, depending upon network load.

The retries allowed field specifies how many retries of

retrievable errors are to be attempted by the port before the

error is declared uncorrectable. The default number of retries is

3.

2.4.1.17 NI Station Address Written (NSAWRT) Response — The

response format to the WETSNA command is given in Figure 2-38. The
definitions of the bits for this response are the same as those
for the WRTNSA command.

QUEUE FUNK

QUEUE BLINK

RESERVED FOR SOFTWARE

<0-7>
STATUS

<8-15>
FLAGS

<16-23>
OPCODE MBZ

<0—
MBZ

<0
HIGH ORDER NI ADDRESS

-31 >

LOW ORDER NI ADDRESS

<32> <33>
AMC

<34>
H4000 MODE

<0
MUST BE ZERO

-23>

<32-35>
MBZ

MBZ

<35>
PRMSC MODE

<24
RETRIES ALLOWED

-35>

Figure 2-38 NSAWRT Response Format

2.4.2 Self-Directed Commands — Loopback
It is specifically allowed for a datagram transmitted to be

destined for the transmitting node, as one form of loopback. The
design of the NI adapter (the NI physical channel), however,
shares the CRC generator/checker between the receive and transmit
circuits.

2-38

Since the CRC circuits must be used to check the incoming packet,
packets destined for the transmitting node must supply a CRC code
that will be transmitted in place of the internally generated CRC.

This driver CRC is appended onto the end of the normal data
packet, and the included CRC (ICRC) bit of the packet FLAGS field
is set. The text length does not include the appended CRC.

2.5 DATA FORMATTING/PACKING MODE
The KLIO NI port supports one data formatting mode. The mode is
industry compatible. Figure 2-39 illustrates the industry-
compatible mode for mapping 8-bit NI bytes into 36-bit KLIO words.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35—1—1—1—1—1—1—1

—

BYTEO
1 1 1 1 1 1 1

1 1 1 1 1 1
1

—

BYTE1

—

1

1 1 1 1—

1

I

1 T" r—1—T—1—1

—

BYTE 2

—

1

1 1 1 1 1 L.

I T—

T

1 \ 1 1

BYTE 3

1—

1

1 1—I 1 1

MBZ
J 1 L

Figure 2-39 KLIO Word (Industry-Compatible Mode)

2.6 MAINTENANCE OPERATION PROTOCOL
The network management specification requires that each NI node
handle certain maintenance operation protocol (MOP) messages:

1. Request ID (REQID)
2. Loopback (LPBK)
3. Read counters (RDCNT)

In addition, the Ethernet specification includes these client
layer protocols. Microcode space considerations do not allow these
features to be implemented in the NIA20 port microcode.

Higher layers of software will handle the MOP messages; in fact,
the port microprocessor should not be giving correct responses to
MOP messages if these higher layers of software are not present
and functioning.

2.7 ERROR HANDLING
The port microcode is capable of retrying many operations that
fail — to allow a large part of the error recovery to be built
into the port microcode and removed from the port driver. When the
port encounters a fatal, nonrecoverable error, the port will stop
processing any more commands. The port will then move the command
queue entry to the tail of the response queue and request an
interrupt. The port will then enter the disabled state.

While the port is waiting for port driver intervention, it will
not be emptying packets out of the receiver buffer, so packets may
be discarded due to lack of available buffer space. While the port
is in the disabled state, no increment of a datagrams discarded
event counter is made.

2-39

A class of more severe errors causes the port to cease operations
immediately and exit to a special microcode location that has a

CRAM parity error. The host will notice the error location, and

will reinitialize the port, if possible. Errors in this class
indicate a failure in the interfaces between the port and the

external world (e.g., memory, the EBus, the CBus, interrupt

structure) . Errors of this severity indicate a serious port
hardware problem. In general, the port is trying to indicate that

it cannot communicate with anything.

2.7.1 Error Events
Some errors may not necessarily involve a hardware malfunction.
Such errors include excessive collisions, CRC errors, and framing
errors. The occurrence of these errors terminates the packet
transmission or reception in progress when the error occurs, but
does not affect the processing of other commands or packets being
received.

Errors of this sort are reported by creating a response packet for

the transfer involved, and setting the status field accordingly.

Table 2-7 provides a list of possible error conditions.

2.7.2 Discarded Datagrams
Under certain conditions, received datagrams may be discarded
because of insufficient buffer space — characteristic of the

datagram class service offered by the NI port. For example, if a

received datagram is occupying buffer space in the NIA and
obtaining a free queue entry from some free queue fails, the
datagram involved is discarded, and the datagrams discarded
counter for the appropriate free queue is incremented. This occurs
even if buffer space in the link is still available.

The reasons for this are that 1) other packets being received may
be able to be stored since the free queue error condition is

protocol-type-dependent, and 2) if the link fills up, datagrams
will be discarded without increment of a datagrams discarded event
counter. No other error indication or response is made. It is up
to higher levels of the network to detect and recover from such
errors.

If the port is addressed by a burst of packets such that the

internal buffer space in the NI physical channel is exhausted,
datagrams may be discarded without increment of the datagrams
discarded counter. The buffer space allowed in the physical
channel (NI link) is sufficient to make this event unlikely. The
NIA has 16K bytes of buffering, normally organized as 32 pages of
512 bytes each. This storage is sufficient for 32 minimum-size
packets and 10 maximum size packets.

2-40

Table 2-7 Possible Error Conditions

Error Condition Description

Unrecognized command

Buffer length violation

CRC error

Framing error

Packet too long

Excessive collisions

Carrier lost

Collision detect check

Remote failure to defer
(also called late collision)

System buffer unavailable

Packet (from driver) has invalid
operation code

BSD has inconsistent buffer length
information

Received packet has CRC error

Received data not byte aligned (not
an integral number of octets in
frame (number of bits not evenly
divisible by 8)

Packet length exceeds maximum
Ethernet packet length

Packet transmission attempt collided
16 times in succession

Carrier lost before end of packet
detected

Collision detect heartbeat failed to
assert

Collision occurred after the slot
time expired

Port microcode was unable to get a
free queue in KLIO memory

2,7.3 Event Counters
To provide for performance measurement, and for diagnostic
purposes, a number of event counters are provided by the port.
These record the occurrence of certain events, and can be read and
cleared upon command by the driver program. The read and clear
counters (RCCNT) command reads the value of these counters and
returns them in the read counters block.

These event counters do not necessarily record, or imply, abnormal
errors, but high counting rates for some of them may point to a
hardware or software failure. A list of applicable events is as
follows:

1. Received a byte
2. Transmitted a byte

2-41

3. Received a frame
4. Transmitted a frame
5. Received a multicast byte
6. Received a multicast frame
7. Transmitted a frame that was initially deferred
8. Transmitted a frame with a single collision
9. Transmitted a frame with multiple collisions
10. Failed to transmit a frame successfully
11. Sent failure reason bit mask
12. Transmitted a frame with a late collision
13. Failed to receive a frame successfully
14. Received failure reason bit mask
15. Discarded a datagram for unknown protocol type free queue
16. Discarded a datagram for protocol type entry 1 free queue
17. Discarded a datagram for protocol type entry 2 free queue
18. Discarded a datagram for protocol type entry 2 free queue

through 16 free queue

2.8 CONTROL AND STATUS REGISTER
The control and status register (CSR) is another mechanism for
communication between the KLIO and the NIA20 port. It is a 36-bit
register that resides in the port's EBus interface module.

The KLIO accesses the CSR by executing CONO and CONI commands and

the port accesses the CSR by executing MPLOADCSR and MPREADCSR
commands to load or read the register. The register is read/write
interlocked to prevent simultaneous access.

A complete explanation of the register bits and their meaning is

provided in Chapter 5. It is important here to understand that
this method of communication exists. Some of the functions
performed using the CSR include:

1. Port is enabled or disabled
2. Port is in the idle loop
3. Microprocessor is in the run state
4. Port requested an interrupt
5. Port error: port informs driver that an error occurred
6. CRAM parity error exists
7. MBus error exists
8. EBus parity error exists

The CSR is important in error handling and reporting. Some classes
of errors are severe and are reportable only through the use of
the CSR — for example, a planned CRAM parity error, which is the
result of the port executing a known bad parity microinstruction.
These instructions are purposely written to the CRAM with bad
parity and are used only when certain error conditions appear. It

will be detected by the CRAM parity logic and will force a

nonvectored interrupt.

2-42

2.9 NETWORK ARCHITECTURE AND FUNCTIONAL LAYERS
Networking systems are designed and constructed in functional
layers. Each layer performs a specific set of functions and
services. The combination of the layers creates what is called the
network architecture, where the layers interact to provide total,
end-to-end network operation.

Most network architecture conforms to the International Standards
Organization's model for Open Systems Interconnection, and the
Digital Network Architecture (DNA) is no exception. Figure 2-40
shows how the functional layers of the ISO model and the DNA
layers correspond.

C^
ISO DIGrTAL NETWORK ARCHITECTURE

ARCHITECTURE LAYERS CAPABIUTIES

APPLICATION

USER FILE TRANSFER
REMOTE RESOURCE ACCESS
DOWN LINE SYSTEM LOAD
REMOTE COMMAND FILE

SUBMISSION
VIRTUAL TERMINALS

NETWORK
MANAGEMENT

PRESENTATION
NETWORK

APPLICATION

SESSION SESSION CONTROL

PROGRAM-TO PROGRAM
TRANSPORT END-TO-END

COMMUNICATIONS

NETWORK ROUTING ADAPTIVE ROUTING

DATA
LINK

DATA LINK DDCMP
PT TO PT

MULTIPOINT
X.25 ETHERNET

PHYSICAL PHYSICAL LINK

Figure 2-40 Digital Network Architecture (DNA)
Layers

- Functional

2.9,1 Physical Link Layer and Data Link Layers
The physical layer is the bottom and most basic layer. It manages
the physical transmission of information over the channel. The
data link layer, residing immediately above the physical link
layer, creates a communications path among adjacent nodes. It
frames messages for transmission on the channel connecting the
nodes, checks the integrity of received messages, and manages the
use of channel resources.

The physical and data link layers operate together to provide a

packet delivery (or datagram) service between nodes in the
network, where packets are sent from the doorstep of one node to
the doorstep of another. The Ethernet specification deals with
these two layers and describes the necessary parameters and
protocols.

2-43

2.9.2 Routing Layer
The routing layer provides a message delivery service, routing
user data packets to their destinations. The routing layer and the
remaining upper layers support multiple types of data link
circuits. In addition to Ethernet, for example, point-to-point and
X.25 (packet switched) virtual circuits could be supported.

2.9.3 End-to-End Communications Layer
The end-to-end communications layer provides a system-independent
program-to-program communication service. It allows two processes
to exchange data reliably and sequentially, independent of which
network systems are communicating or their location in the
network. Network services protocol (NSP) is used for end-to-end
control of addressing, data integrity checking, transaction flows,
interrupts, and flow control among communicating processes.

2.9.4 Session Control Layer
This layer provides system-dependent, program-to-program
communications functions that bridge the gap between the previous
layer and the logical link functions required by processes running
under an operating system.

Session control functions include mapping node names to node
addresses, identifying end users, activating or creating
processes, and validating incoming connect requests.

2.9.5 Network Application Layer
The network application layer controls the network functions used
by the two higher layers of DNA. Services include remote file
access, remote file transfer, remote interactive terminal access,
gateway access to non-DNA systems, and resource managing programs.

2.9.6 Network Management Layer
The network management layer is the only layer that has direct
access to each lower layer. It provides the functions to plan,
control, and maintain the operation of the network. Functions
include down-line loading, up-line dumping, remote system control,
test functions, and event logging functions.

2.9.7 User Layer
The user layer contains most user-supplied functions, including
programs that access the network and those network services that
directly support user and application tasks.

Some examples of the more common services accessed by users
include resource sharing, file transfers, remote file access,
database management, and network management.

2.9.8 Layer Interfaces
Figure 2-41 shows the relationships among the DNA layers. The top
three layers each have a direct interface with the session control
layer for logical link services.

2-44

USER

NETWORK MANAGMEMENT

NETWORK APPLICATION

SESSION CONTROL

END COMMUNICATIONS

ROUTING

W W

DATA LINK

PHYSICAL LINK

PHYSICAL CHANNEL

Figure 2-41 DNA Layers and Interfaces

Each layer interfaces with the layer directly below to use its
services. The network management layer interfaces to every other
layer to get the data needed to control and manage the network.

Horizontal arrows show direct access for control and communication
of network parameters. Vertical arrows show interfaces between
layers for normal user operations such as file access and
down-line loading.

2.9.9 Expanded Ethernet Networks
Extending the capabilities of Ethernet networks can be
accomplished by adding communication server products. These
products include:

Terminal and print servers, which connect clusters of
terminals and unit record equipment to an Ethernet
network

Router servers, which connect DECnet systems on an
Ethernet with remote DECnet systems on another Ethernet
or other DECnet network. Router servers do not need to
convert protocols, since they enable nodes of like
architecture to communicate

2-45

Gateway Servers

1. Systems network architecture (SNA) gateway servers,
which connect DECnet systems with an IBM SNA network

2. X.25 Gateway servers, which enable an X.25 public
packet-switched network to connect DECnet systems
with remote DIGITAL or non-DIGITAL systems

Gateway servers can translate protocols to allow communication
between nodes with different network architectures.

Figure 2-42 shows a DECnet with many connected Ethernet segments.

ETHERNET

J ROUTER
t

VAX ... VAX

Figure 2-42 DECnet Network with Many Ethernet Segments

2-46

CHAPTER 3
INSTALLATION OF NIA20 IN KLIO-E

3.1 OVERVIEW
This chapter describes the installation of the NIA20 Network
Interconnect Adapter in a KLlO-E system. Appendix A describes the
installation of the NIA20 in a KLIO-D. Appendix B describes the
installation of the NIA20 in a KLIO-R. Figure 3-1 and Figure 3-2
show the NIA20 installed in a KLIO-E, rear and front views,
respectively. Table 3-1 itemizes the NIA20 parts, and Table 3-2
lists the harness and cable connections used in the NIA20/KL10-E
installation.

CPU CABINET I/O CABINET ^=W
REAR VIEW

Figure 3-1 NIA20 in KLlO-E, Rear View

Table 3-1 Parts List, NIA20 in KLlO-E

Line
Item Part No. Description Qty

1 7019268--00
2 7019268--01
3 7428312--01
4 7428222--01
6 9006073--01
7 9006022--01
8 9006633--00

Card Cage Assy IPA-20-L
Card Cage Assy CI20
Bracket, Interface
Baffle, Air
Screw, Mach Pan Phil 10-
Screw, Mach Pan Phil 6-
Washer, Lock Internal Steel

1

1

1

1

13
6

6

3-1

Table 3-1 Parts List, NIA20 in KLIO-E (Cont)

Line
Item Part No, Description Qty

9 1213716-00
10 7020539-06
11 7019274-06
12 7019272-00
13 7019273-00
14 7019893-2L
15 BC06R
16 7019266-00
17 M3002-00
18 M3003-00
19 M3001-00
20 9007032-00
21 1213715-00
22 H7440-00
23 L0072-00
24 7014103-00
25 9107673-06
26 7011432-02
27 9007651-00
28 9006664-00
29 7020352-00
30 7019862-00
31 5414506-01
32 7019270-lJ
33 3621499-01
34 3613272-00
35 9007031-00
36 9008264-00
37 3621498-02
38 9105740-55

39 7428311-01
40 9006659-00
41 5415695-01
42 7020488-00
43 7021448-5C
44 3617674-00
45 3617674-01
46 3617880-09
47 3621501-02

Spacer, Foam Polyu 1/2 4

Cable, Fan AC 1

Cable, Fan AC 1

Harness, DC-5.2 Sect Nl-1 DC+5 1

Harness, DC-5.2 Sect Nl-2 DC+5 1

Cable Assy Ethernet 1

BC06R I/O Cable 1

Module Blank Assy 1

CI20 Microprocessor, Multiwire HE 1

CI20 C-Bus/PLI Interface, Multiwire 1

CI20 E-Bus Interface, Multiwire HE 1

Tie, Cable Bundl. Dia 0-l-3/4"=101 A/R
Clip, Flat Cable W/Adhesive Bk 4
POAl H7440 1

NI20 (KLIO to NI Adaptor) 1

Blank Module Assy 1

Pwr Cord, Term 3-14 SJT 115 1

Pow Cord Extension 50Hz 1

Washer, Lock External Steel 14
Washer, Flat SST 12
Harness, DC Voltage Monitor 1

Harness, Vane Switch 1

Voltage, Monitor Board 1

Bus, Cable, M Assy 1

Label, DCV Monitor CI20 1

Label, Adh Back, Mylar Cap 1

Tie, Cable Bundl. Dia 0-3/4"=101 36
Mount, Cable Tie, Adhesive Back A/R
Label, Airflow CPU/NI CT 20 1

Wire (Wrap) 30AWG KYNAR UL14
(12 ft. required) A/R
Support, Cable 1

Washer, Flat S/PAS 2
Current Limiter 1

Cable, Short Switch Vane 1

Cable, DC Voltage Monitor Sect.l 1
Label, Serial/Power W/0 UL + CSA 1

Label, Serial/Power W UL & CSA 1

Label, Class "A" Subassembly 1

Label, Module Location, NI20 1

3-2

DC VOLTAGE
MONITOR
BOARD

^©^
I/O CABINET
^4^

FRONT VIEW

3^mBibr~ OPTIONAL
(NOT INSTALLED
WHEN CABLE
SUPPORT PANEL
IS INSTALLED)

CPU CABINET ^=W

Figure 3-2 NIA20 in KLIO-E, Front View

Table 3-2 NIA20 in KLIO-E Harness and Cable Connections

Harness Connections

Parts
List Harness Terminals
Item
No. Point Connection Connection Remarks

12 ^. PI NIA20 BP J2 ^—
— P3 NIA20 BP Jl —
5 — CPU #3 BP GND —
6 — CPU #3 BP -5.2H —
— P2 SECT. N-2 Jl Parts List Item 13

13 — PI H7440 Jl See Figure 3-5
7 — See Figure 3-5
8 — See Figure 3-5

30 __ PI Fan Brkt. Jl See Note 1— P2 See Figure 3-11 See Note 1— Jl See Note 2 See Note 1— P3 NIA20 BP J6 See Notes 1 and 3

29 — P2 NIA20 BP J5— PI Jl Parts List Item 31
6 —

—

+5V Mon.Bd. Jl-5 See Figure A-2

3-3

Table 3-2 NIA20 in KLIO-E Harness and Cable Connections (Cont)

Harness Connections

Parts
List Harness Terminals
Item

—
No. Point Connection Connection Remarks

41 P3 PI CI20 Cable Vane Switch See Note 4

P2 — NIA20 Fan Brkt. Jl See Note 4

PI — CI20 Fan Brkt. Jl See Note 4

43 — Jl PI Parts List Item 29
PI Mon.Bd. Jl Parts List Item 31

NOTES:

1. Items not needed when CI kit is installed:

Item Qty Part No. Description

5 8 9007786-00 Retainer, U-Nut 10-32X
6 8 9006073-01 Screw, Mach Pan Phil 10-

27 8 9007651-00 Washer, Lock Ext ST
28 8 9006664-00 Washer, Flat SST
3 1 7428312-01 Bracket, Interface
30 1 7019862-00 Harness, Vane Switch

2. Jl on parts list, item 30 (harness, vane switch) connects with
existing connector P4 (see Figure 3-11)

.

3. Relocate cable from CI20 card cage at J6 connector and insert
into NIA20 card cage J6 connector.

3-4

Table 3-2 NIA20 in KLIO-E Harness and Cable Connections (Cont)

Cable Connections

Parts
List
Item
No.

From To
Unit Location Re£.Desig. Unit Location Re£.Desig. Remarks

10 C.Cage Gnd Gnd 25 or Jl PI NIA20-CB
Fan Brk J2 P2 26

14 C.Cage J4 PI 41 P2

25/26 Item 10 PI Jl 861 PC PI Connect
to or 11
any
avail.
switched
outlet

1/2 C.Cage Gnd - Cabrail Hole 1 -

15 NI20 BP J 3 PI Stripe
Down

RH20
DTE CC

M3003 J2 P2 Stripe
Up

32 M3003 Jl P3 M3002 Jl P2

M3001 Jl PI M3002 Jl P2

38 RH20 BP BlONl _ RH20 BP B13B1 -

B13B1 - B19B1 -

C10L2 - B13B2 -

B13B2 - B19B2 -

C10K2 - B13U1 -

B13U1 - B19U1 -

C10T2 - C13B1 -

C13B1 - C19B1 -

C12H2 - C13N1 -

C13N1 - C19N1 -

C12L1 - C13B2 -

C13B2 - C19B2 -

C14H2 - A15R2 -

C14F1 - F15A1 -

A14J2 - A15E1 ~

C14P1 - A15D2 -

C14K2 - A15S2 -

B14J1 - B15A1 -

C20H2 - A21R2 -

C20F1 - F21A1 -

A20J2 - A21E1 -

C20P1 - A21D2 -

C20K2 - A21S2 -

B20J1 — B21A1 ""

3-5

The NIA20 installation uses assigned slots in RH20 logic assembly
positions 4 and 5, with RH20 positions 6 and 7 reserved for

installation of a CI20 computer interconnect. A system containing
an NIA20 is limited to a maximum of four RH20s. In the
installation of an NIA20, a module blank assembly, Digital P.N.

7019266-00, is used to prevent plugging any other module into RH20
position 4 as described in subsection 3.4.3, instruction 7 (Figure
3-3).

M3003
SLOT 21

M3002
SLOT 20

/- M3001
f SLOT 1

9

MBUS
CABLE

Figure 3-3 MBus Cable Interboard Connection, Top View

NOTE
Previous or subsequent installation of a

CI20 with an NIA20 requires minor
deviations from the procedure and will be
described when applicable.

Installation of the NIA20 in an existing system requires

implementing the following procedures, which are described in this

chapter.

3-6

1. Unpacking and checkout of installation kit
2. Preinstallation checkout
3. Backplane wire adds
4. Installation of port modules
5. Installation of power supply regulator
6. Installation of NIA card cage
7. Installation of NIA current limiter
8. Installation of dc power harness
9. Installation of vane switch harness
10. Installation of dc voltage monitor harness and module
11. Installation of PLI bus
12. Installation of fan ac cable and power cord
13. Installation of internal NIA cable
14. Installation of KLIO adapter board and blank module

assembly
15. Checkout.

3.2 UNPACKING AND CHECKOUT
Before unpacking any equipment, move all boxes into the computer
area. Check the shipment against the packing list to be sure that
all boxes were sent. If any boxes are missing, contact the
customer and the branch field service manager. Check that all
boxes are sealed, and there is no sign of external damage (dents,
holes, or damaged corners) ,

If any boxes are open or damaged, document it on the installation
or field service report and inform the customer. Open the boxes
one at a time, starting with the box marked "READ ME FIRST" and
find the packing slip. Check the contents of the box against the
packing slip and examine each item for damage. Note missing or
damaged items on the installation report or field service report.

At completion of the unpacking and checkout phase, advise the
branch field service manager of any problems that occurred during
this phase. If any items are damaged, the branch field service
manager may want the customer to file an insurance claim. For
missing items, the branch field service manager should get a
short-ship request.

3.3 EQUIPMENT NEEDED FOR INSTALLATION AND CHECKOUT
The following equipment is required for installation and checkout
of the NIA20:

1. Wire wrap tool (or wire wrap gun). No. 30 AWG, Digital
P.N. 29-18301

2. Wire unwrapping tool. No. 30 AWG, Digital P.N. 29-13513
3. Regular Phillips screwdriver
4. Tektronix 475 oscilloscope or equivalent (100 MHz)
5. KLAD pack
6. Scope, digital voltmeter

3-7

3.4 INSTALLATION PROCEDURE

3.4.1 Preinstallation Checkout
Before performing the installation, verify that the configured
system now in use is operating properly, to preclude the

possibility of current system problems being ascribed to the NIA20
after its installation.

1. Remove all customer media, to minimize the possibility of

corrupting customer data.

2. Mount the supplied KLAD pack; bring up the diagnostic
monitor; and run the "B" string to verify that the system
is working properly.

3. Power-down the system.

4. Verify that the system has a M8532-YA board installed. If

not, replace the currently installed M8532 with a

M8532-YA.

5. RH20 positions 4 and 5 will be used for the NIA20. If

there is an RH20 in position 4, remove it. If there is an
RH20 in position 5, leave it installed temporarily and
perform diagnostic DFRHB to verify the reliability of the
backplane wiring. If there is no RH20 in position 5,

relocate a module from one of the other RH20 positions to

position 5.

6. Power-up the system and run diagnostic DFRHB. This
verifies that the backplane wiring of RH20 position 5 is

functional. Power-down the system and reinstall the RH20
in its original position.

7. Perform diagnostic DFRHB also in RH20 position 7, to

verify the reliability of existing backplane wiring in

RH20 positions 6 and 7, before implementing any NIA20
modifications.

8. Power-down the system and reinstall the RH20 in its

original position.

3.4.2 Backplane Wire Adds
^,,.#

'* For the installation of the NIA20, 24 new wires must be added to
'^ RH20 backplane positions 4 and 5. An examination of the RH20

backplane must be performed to confirm the physical addition of

the wire wraps listed in Table 3-3. A check column is included in

the table for the wire installer to record installation progress.

To prepare the wire adds, strip approximately 1 inch of insulation
from the wire to allow sufficient turns to be made on the wire
wrap post. After each wire is added, enter a check mark in the
blank space adjacent to the wire listing in Table 3-3.

3-8

Table 3-3 NIA20 in KLIO-E Wire Adds

Signal Name From To/From

EBUS Dll L BlONl B13B1
EBUS D12 L C10L2 B13B2
EBUS D13 L C10K2 B13U1
EBUS PARITY L C10T2 C13B1
EBUS PIOO L C12H2 C13N1
EBUS PARITY ACTIVE L C12L1 C13B2
MPR7 MWBUSCTLFLDOl H C14H2 A15R2
MPR7 MWMGCFLD08 H C14F1 F15A1
MPR7 MWTIMEFLD H A14J2 A15E1
CBIl CLK2 L C14P1 A15D2
CBI2 CLK4 L C14K2 A15S2
CBI2 CCCHANERR L B14J1 B15A1
MPR7 MWBUSCTLFLDOl H C20H2 A21R2
MPR7 MWMGCFLD08 H C20F1 F21A1
MPR7 MWTIMEFLD H A20J2 A21E1
CBIl CLK2 L C20P1 A21D2
CBI2 CLK4 L C20K2 A21S2
CBI2 CCCHANERR L B20J1 B21A1

To

B19B1
B19B2
B19U1
C19B1
C19N1
C19B2

Check

To assure the reliability of the new wiring, an ohmmeter check of
each new wire add should be performed by a person other than the
wire installer.

3.4.3 Installation of Port Modules
Protective backing is placed on the lower third non-component side
of each port module and the upper third of the non-component side
of the M3002. As the modules are inserted and/or removed, the
protective backing protects the MBus and PLI bus cables. The
protective backing should not interfere with the card guide or
cover the gold finger contacts on the module. Insert the port
modules as follows:

1. Connect MBus cable. Digital P.N. 7019270-lJ. Be sure to
orient the cable so that the flat wire comes out of the
cable header away from the board, as shown in Figure 3-3.

2. Insert the M3001 EBus interface/port ALU module in the
rightmost slot of RH20 position number 5 (slot 19,
looking at the backplane from the module side) . The arrow
on cable should be aligned with the arrow, on the board
connector.

3.

4.

Connect the MBus cable to the M3002 Port microprocessor
module as shown in Figure 3-3.

Insert Module M3002 in slot 20 to the
installed M3001 as shown in Figure 3-3.

left of the

3-9

5. Connect the MBus cable to the M3003 module as shown in

Figure 3-3.

6. Install the M3003 CBus/PLI interface module in slot 21,

which is located to the left of the installed M3002.

7. Install the module blank assembly, Digital P.N.

7019266-00, in RH20 position 4, slot 22. This assembly

blocks slots 22, 23, and 24. It prevents modules from

being inserted into RH20 position 4 and provides a baffle

for system cabinet airflow.

8. Perform an ohmmeter check between PT17U and ground to

verify that there are no shorts to ground.

9. Fold the MBus cable into the module blank assembly as

shown in Figure 3-3.

10. Close the module door.

11. Attach the self-sticking module utilization decal.
Digital P.N." 3622344-02, on the upper rear baffle panel.

12. Power-up the KLIO.

13. Readjust the existing +5 V power supply to 5.0 + 0.25 V.

This adjustment is located on H7420 number 1 in H744
number 4. The location of this regulator is farthest away

from the circuit breaker. The voltage is monitored at

+5H, between PT17U and ground.

14. Type MR (CR) with KLDCP loaded and running, then type FXl

(CR) in response to the command prompt, as shown below:

>. MR (CR)

>. FXl (CR)

15. De-skew the port modules using a Tektronix 475 (or

equivalent 100 MHz minimum) oscilloscope by performing
the steps given in Figures 3-4 and 3-5.

16. Connect channel 1 of the oscilloscope to MTR MBOX CLK H,

4D33P1, on the CPU backplane. Use a ground clip.

17. Set the time base to 20 ns.

18. Set channel 1 vertical gain to 0.5 V/division. Set the

ground reference to 1.3 V above the horizontal center

level of the oscilloscope. (MTR MBOX CLK H is an ECL
signal .

)

19. Set the oscilloscope sync to positive external.

3-10

:

A

1
7

"

"A

[
-H-fj- 4 1 h 1 1 1

1

1 1 1 li 1 1 1

1

1

I 1 1 1

-•

A/ ,yv J^
J III II 1

1

p+H 1 1 1 1 -t-i-tt

La..."^^ *r v-* v/ .

:

vx

:

50nnV ; 20nS

EXTERNAL SYNC
(CHTOH, 4B09K1)

EXTERNAL SYNC (CHTO H)

Figure 3-4 NIA20 De-skew Timing. External Sync (CHTO H)

CHANNEL 2

(EBUSCLK L. 2A21F1]

CHANNEL 1

MTR MBOX CLK,
(4D33P1)

EBUS CKL L AND MTR MBOX CLK

Figure 3-5 NIA20 De-skew Timing. EBUS CLK L and MTR MBOX CLK

20. Connect external sync input to CHTO H, 4B09K1 on the CPU
backplane (Figure 3-4). Use a ground clip.

21. Connect channel 2 to CDSl, EBUS CLK L, 2A21F1 on the I/O
backplane. Set the channel 2 vertical gain to 0.5
V/division. Use a ground clip. To measure TTL voltages,
set the ground reference to 1.5 V below the horizontal
center line of the oscilloscope.

3-11

22. Press the trigger view switch of the oscilloscope and

display the external sync. Adjust the display, so that

the rising edge of the external sync aligns with the

vertical center line of the oscilloscope.

23. Display MBOX CLK H, channel 1. Identify the rising edge

of MBOX CLK H that occurs prior to the vertical center
line of the oscilloscope. Display channel 1 and channel
2.

24. Put the KLIO-E in the override fault state. Remove the

I/O rear door to access the I/O backplane.

25. Locate the bottom- potentiometer on the clock module
/-^m'SSSS) in ¥iot 12 of the I/O backplane. Using this

^ potentiometer, adjust the falling edge of channel 2, EBUS

^?L^ CLK L so that it crosses the rising edge of M60X CLK H.
'^t^*^ This crossing occurs on the horizontal center line of the

oscilloscope.

26. Disconnect all probes.

27. Mount the KLAD pack on the front end RP06.

28. Load and run diagnostic DFPTA to verify proper

functioning of the port modules. If the modules fail,
troubleshoot as directed by the diagnostic. If the
modules are functioning properly, continue with the
installation.

3.4.4 Power Supply Regulator Installation
Three H7420 power supplies are located on the I/O cabinet side
wall as shown in Figure 3-1. The H7440 regulator to be added is

installed in the upper H7420 power supply location. This
additional +5 V regulator is required to support the NIA20 card
cage and is installed as follows (see Figure 3-6)

:

1. Remove the spare slot filler panel from slot 5 of the

H7420 number 1 power supply. Save all existing hardware.

2. Take the new H7440 regulator from the kit and install the

H7440 in slot 5 of H7420 number 1, using two screws on
top and one thumbscrew at the bottom. (Some systems may
use H744 or H7440 regulators.) /

3-12

PT7 P3

J3 15 PIN CONNECTOR

DC HARNESS

Figure 3-6 H7420 Power Supply

3.4.5 Installation of NIA20 Card Cage/Internal Cable

NOTES
1. When a CI20 is installed, the NIA20

is mounted as shown in Figure 3-1.

2. If the CPU cabinet side panel cannot
be removed, the current limiter (see
Section 3.4.5.1) should be installed
before the card cage to avoid making
the location inaccessible.

3-13

To install the NIA20 card cage shown in Figure 3-7 and the
internal NIA20 cable:

1. Install the two NIA20 mounting brackets shown in Figure
3-8.

a. Remove and reposition any tie-wrapped cables from the
right-side frame member of the CPU cabinet (viewed
from the front) to accommodate the NIA20 mounting
brackets and card cage,

b. Install a total of 8 U-nuts (Tinnerman nuts) , Digital
P.N. 9007786-00, on the right-side frame members of
the CPU cabinet (viewed from the front) in
preparation for NIA20 card cage and current limiter
installation. Insert the Tinnerman nuts into frame
holes 5, 11, 15, and 52 on each vertical side frame
member counting up from the bottom of the cabinet
(see Figure 3-8) . Four Tinnerman nuts are inserted
into each vertical side frame member.

TOP

CABLE
STRAIN
RELIEF-

FRONT

REAR VIEW SIDE VIEW FRONT VIEW

Figure 3-7 NIA20 Card Cage Views

3-14

REAR
CONNECTOR PANELS

HOLE 52

KL10-E
RIGHT-SIDE
CPU CABINET
(FRONT VIEW)

HOLE 52

NIA20
CURRENT
LIMITER

HOLE 11

-BRACKET
INTERFACE

HOLE 5

Figure 3-8 NIA20 Card Cage in KLIO-E

c. Use four 10/32 one-half inch Phillips panhead machine
screws. Digital P.N. 9006073-01 and four No. 10 star
lockwashers. Digital P.N. 9007651-00 on each vertical
side of the frame.

Locate the NIA20 internal cable strain relief (white) on
the rear left-side of NIA20 card cage (see Figure 3-7)
Because of the inaccessibility of this strain relief oncethe card cage is mounted, the internal cable is routedthrough it before installing the card cage.

3-15

3.

4.

Locate the three-foot internal NIA20
7019893-2L.

cable, Digital P.N.

Prepare the internal NIA20 cable for installation by

positioning a stick mount on the right-side frame member

of the CPU cabinet (viewed from the front) , above the

reserved CI20 connectors on the bracket interface (see

Figure 3-9)

.

STICK
MOUNT —
LOCATION

HOLE 1

1

BRACKET
INTERFACE
7428312-01

HOLE 5

7019893-2L
INTERNAL CABLE

J1

CONNECTOR

BNE3
CONNECTOR
(ETHERNET
TRANSCEIVER)

KL10-ECPU CABINET
(REAR VIEW)

Figure 3-9 NIA20 Current Limiter

Route the three-foot internal NIA20 cable through the

white plastic strain relief on the NIA20 card cage. Allow
enough slack to connect the internal cable to the NIA20

card cage backplane and tighten the strain relief.

Connect the internal NIA20 cable to the J4 connector (see

Figure 3-7) on the rear of the NIA20 card cage and route

the cable as shown in Figure 3-1. The cable connector
engages a detent when properly seated.

3-16

7. Mount the NIA20 card cage on the two NIA20 mounting
brackets (see Figure 3-8), using a total of four 10/32
screws, external lockwashers, and flat washers in frame
holes 15 and 52. Hang the NIA20 card cage on the top two
screws; then install the bottom two screws.

8. Install the NIA20 card cage ground cable (see Figure
3-7).

a. Install a Tinnerraan nut in hole 11 of the left side
frame member in the CPU cabinet (viewed from the
rear) .

b. Connect the ground cable on the left-side frame
member (viewed from the rear) by inserting a screw
and using a starwasher on each side of the ground
cable.

c. Attach a ground label. Digital P.N. 3613272-00,
closest to hole 1.

9. Run the internal NIA20 cable to the previously positioned
stick mount and insert its other end into the rear Jl
connector of the NIA20 current limiter.

3.4.5.1 Installation of NIA20 Current Limiter — The NIA20
current limiter. Digital P.N. 5415695-01 is preinstalled on the
bracket interface. Digital P.N. 7428312-01, as shown in Figure
3-9. The bracket interface, NIA20 internal cable, and BNE3
external cable are installed at the site as follows:

1. Locate the bracket interface, which is to be located on
the lower right-side frame holes 5 and 11 of the CPU
cabinet (viewed from the front) . Four 10/32 screws,
external lockwashers, and flat washers are used to
install the bracket interface.

2. Connect the internal cable to the rear Jl connector and
also connect the BNE3 external (Ethernet transceiver)
cable to the front PI connector located on the NIA20
current limiter (see Figure 3-9)

.

3.4.5.2 Harness Installation — The following harnesses are to be
installed:

1. Direct current power harness (two sections)
2. Vane switch cable
3. Direct current voltage monitor cables
4. Fan alternating current cable and power cord
5. PLI bus
6. External BNE3 NIA20 cable

3-17

The diagram in Figure 3-10 shows the harness and cable
interconnections. The harnesses are installed as follows:

1. Install tie wraps approximately eight inches apart on all
harnesses. When routing cables close to internal
assemblies, use spiral wire-wrap to protect the cables
from edges.

SLOT SLOT SLOT
21 20 19

SEE TABLE 3-3

FOR POINT TO POINT

I/O INTERFACE
7019893-2L' 5415695-00

Figure 3-10 NIA20 Harness and Cable Interconnection Diagram

4.

Locate the dc power harness, Digital P.N. 7019272-00 and
7019273-00 (see Figure 3-11) , and its black and blue
wires labeled PT5 and PT6 . Connect the black wire to -5.2
ground and the blue wire to -5.2H in the CPU cabinet (see
Figure 3-2)

.

Locate and connect Pl of the dc power cable. Digital P.N.
7019272-00, into connector Jl of the NIA20 card cage
backplane (see Figure 3-7) . Next, connect P3 of of dc
power cable into J2 of the NIA20 card cage.

Connect P2 of the 7019272-00 dc power cable to Jl of the
7019273-00 dc power cable.

3-18

CPU CABINET

Figure 3-11 DC Power Cable

5. Tie-wrap the new harness to existing KL I/O power
harnesses and route this cable as shown in Figure 3-1.
Use spiral wrap along the harness where it contacts the
side of the CPU frame member nearest the H7420 power
supplies.

6. Locate the red and white wires labeled PT7 and PT8 of dc
power cable (see Figure 3-11). Disconnect P3 atop power
supply H7420 number 1, then connect PT7 and PT8 to pins 3
and 4, respectively, on P3 of the H7420. Then reconnect
P3 to the H7420.

7. Connect P2 of the 7019273-00 dc power cable to connector
Jl of the previously installed H7440 regulator (see
Figure 3-6)

,

3-19

Locate the vane switch cable, Digital P.N. 7019862-00,
(see Figure 3-12) . Connect PI of the vane switch cable to

connector Jl located on the NIA20 card cage (see Figure
3-7). Also, connect P3 of the vane switch cable to

connector J6 of the NIA20 card cage. Use stick mounts and
spiral wire-wrap as needed to route and protect the vane
switch cable.

CPU
BACKPLANE

CARD
CAGE
J6

Figure 3-12 Vane Switch Cable

9.

NOTE
When a CI20 is installed, the short
switch vane cable. Digital P.N.
7020488-00, is used in a combined
CI20/NIA20 installation. Consult the CI20
reference manual (Digital Order Number
EK-CI20-RM-001) for other applicable CI20
installation procedures.

Remove the original KL CPU vane switch cable (P4) and

connect this to the NIA20 vane switch cable connector Jl.

10. Connect P2 of the vane switch cable to the original KL

CPU vane switch assembly (see Figures 3-1 and 3-13).

11. Overlay the CPU/NIA20 air flow fault decal over the

existing CPU air fault message decal on the 863 fault
switch.

12. Locate the dc voltage monitor cable. Digital P.N.
7020352-00 (see Figure 3-14) . Connect P2 of the dc
voltage monitor cable to J5 on the NIA20 card cage and
connect the other cable end (PI) into connector Jl on the

new dc voltage monitor board.

3-20

VANE
SWITCH
CONNECTOR

P4

BEFORE

VANE SWITCH CABLE J1 P4

VANE X
SWITCH
CONNECTOR \

CPU P2 ^

AFTER

Figure 3-13 Vane Switch Harness Installation

13. Locate the switches on the dc voltage monitor board.
Digital P.N. 5414506-01. Only switch SI should be ON,
while all other dc voltage monitor board switches should
be OFF.

14. Insert the dc voltage monitor board into the +5 V slot of
the dc voltage monitor card cage.

15. Attach the monitor panel decal. Digital P.N. 3621501-02,
to indicate the slot used for the NIA20 dc voltage
monitor board.

16. Connect the remaining single orange wire of the dc
voltage monitor cable to a location adjacent to the
existing orange wire on the dc voltage monitor board zone
+ 5L.

17. Tie-wrap the dc voltage monitor and vane switch harnesses
to the dc power cable. Use adhesive-backed square cable
mounts to support the harness.

3-21

CONNECT

7021448-5C

CARD
cage'
J5

ADJACENT TO
ZONE +5L

DC VOLTAGE
MONITOR
BOARD

Figure 3-14 DC Voltage Monitor Cable

18. Locate the fan ac cable, Digital P.N. 7019274-06 (120 Vac
60 Hz) or 7020539-06 (240 Vac 50 Hz), and the power cord,
Digital P.N. 9107673-06 (120 Vac 60 Hz) or 7011432-02
(240 Vac 50 Hz) , (see Figure 3-15) . Connect the fan ac
cable connector P2 to connector J2 on the NIA20 card cage
and then join the fan ac cable to the power cord. Insert
the other end of the power cord into any available
switched outlet of the 861 power controller. Connect the
ground wire to the adjacent side ground screw on the
NIA20 card cage. Use a starwasher to ensure a good
electrical connection.

19. Install a Tinnerman nut in hole 11 on the frame and
attach the ground cable from the NIA20 card cage to the
frame. Use two starwashers to ensure a good electrical
connection.

20. Locate the cable support panel. Digital P.N. 7428311-00
(see Figure 3-1). Install the smooth side of panel (used
to support the cable harnesses) toward the rear when
facing the CPU cabinet. Use four of each: Tinnerman nuts,
screws, flat washers, and lockwashers in holes 36 and 39.

3-22

FAN AC CABLE

J2
••CARD
CAGE

TO
861 POWER
CONTROLLER
SWITCHED
OUTLET

Figure 3-15 Fan AC Cable and Power Cord

21. Locate the PLI cable. Digital P.N. BC06R--08 (see Figure
3-1 for cable route and Figure 3-10 for cable
connection). Connect one end of the PLI cable (identified
by a red line imprinted on top of the cable) to module
M3003 and route through the cable strain relief on the
NIA20 card cage. The other end of the PLI cable
(identified by a red line imprinted on bottom of the
cable) to connector J3 on the NIA20 card cage (see Figure
3-7). To secure the PLI cable, install adhesive foam.
Digital P.N. 1213716-00, within each of the four flat
cable clamps. Install one cable clamp on the side of the
CPU card cage and three cable clamps across the rear of
cable support panel.

22. Route the cables as shown in Figure 3-1.

23. Replace the CPU cabinet door.

3.4.6 Installation of KLIO Adapter Board and Blank Module
Assembly

The KLIO to NI adapter board. Digital P.N. L0072-00, and the blank
module assembly. Digital P.N. 7014103-00, are installed in the
NIA20 card cage as follows:

1. The KLIO to NI adapter board and the blank module
assembly are installed into the NIA20 card cage by
opening its front hinged-end panel door.

3-23

2. Install the KLIO to NX adapter board (L0072-00) in the
LGfT jdi^t-hand slot.

g^(^^^ 3. Install the blank module assembly (7014103-00) in the
adjacent slot to the

3.4.7 Checkout
The physical part of the installation is complete at this point.
All that remains is to verify that the system runs properly in the

new configuration. Perform the following steps to verify the
installation.

1. Verify that the KLIO-E is no longer in the override fault
state.

2. Power-up the KLlO-E.

3. Readjust the 5 V power supply to 5.0 + 0.25 V. This
adjustment is located on power supply H7420 number 1,

regulator H7440 slot 5 (see Figure 3-6) . This regulator
is located nearest the H7420 power supply breaker. The
voltage is monitored at the black and red wires on
connector Jl of the NIA20 card cage (see Figure 3-11)

.

4. Load and run diagnostic DFPTA for at least five passes in

execute mode.

5. Load and run diagnostic DFNIE for at least five passes in

execute mode.

6. Load and run diagnostic DFNIA for at least five passes in

execute mode.

7. Enable the operating system.

8. Run diagnostics DFPTA for at least five passes in user
mode.

9. Run diagnostics UETP NIA20 test for at least four hours
in user mode.

10. Disable the operating system.

11. Remove all field service packs and tapes from the
customer's system and store in a secure area.

12. Transfer and sign off system to customer's authorized
representative.

3-24

CHAPTER 4

FUNCTIONAL DESCRIPTION

This chapter describes the port functions performed over the EBus

,

CBus, and PLI. It also provides a simplified NIA block diagram and
sample transmit and receive operations.

Detailed descriptions of hardware components, register formats,
microcode bit maps, and field descriptions, if not part of the
descriptions in this chapter, are found in Chapter 5, Logic
Description. Chapter 6 describes how the hardware and microcode
implement the port functions.

4.1 PORT STATES
When a port reset is issued to the running port, the hardware is
reset and the port microcode program counter is set to zero so
that the power-up, self-check initialization code (see Chapter 5)
can be executed. This guarantees that the port enters a
well-defined state after the reset. All of the port registers are
set to the power-up state. The port can be in one of the three
states: uninitialized, disabled, or enabled.

4.1.1 Uninitialized
The port is not running — the power-on state. The port enters
this state after a power-up or a master reset. The port exits this
state only after valid microcode is loaded into the port and the
port clocks are started. Port clocks are enabled when the port
driver sets the microprocessor run bit in the port control an^
status register (CSR32) . If the port and microcode,^^^|j||fe

"

functioning, the port driver sets the disable bit (CSR30) , tel'^ng
the port to put itself into the disabled state. V^ %

4.1.2 Disabled
The port is running but is not accepting NI packets. The port will
process command queue entries that do not involve transmitting ar^
receiving (that is, local commands) . From the unitialized stati^
the disabled state is entered when the port driver %ets
microprocessor run and disable (CSR32 and CSR30) . The port
microcode then informs the port driver that it has put itself in
the disabled state by setting disable complete (CSR12) . From the
enabled state, this state is entered by a command from the port
driver to enter the disabled state, or when the port microcode
detects a nonrecoverable internal port hardware error.

4.1.3 Enabled
The port is fully functional, processing commands and NI packets.
This is the normal state for the port. This state is entered only
from the disabled state, when the port driver sets the enable bit
(CSR31) . The port microcode informs the port driver that it has
put itself into the enabled state by setting enable complete
(CSR13)

.

4-1

4.2 CONTROL AND STATUS REGISTER
The KLIO and the port microprocessor exchange control and status
information through the port CSR, which is a 36-bit register (see
Figure 4-1). The CSR bits are defined in Table 4-1.

BIT

NO.

BIT DEFINITION RD/WR

KLIO PORT

00 PORT PRESENT R H

01 DIAG RQST CSR R H

02 DIAG CSR CHNG R/H H

03
* *

04 RQST EXAM OR DEP R/H R/S

05 RQST INTERRUPT R/H R/S

06 CRAM PARITY ERR R/C H

07 MBUS ERROR R H

08
* *

09
* *

10
* «

11 IDLE R R/W

12 DISABLE COMPLETE R R/W

13 ENABLE COMPLETE R R/W

14
* *

15 PORT ID CODE 00 R H

16 PORT ID CODE 01 R H

17 PORT ID CODE 02 R H

BIT

NO.

BIT DEFINITION RD/WR

KLIO PORT

18 CLEAR PORT W *

19 DIAG TEST EBUF R/W *

20 DIAG GEN EBUS PE R/W *

21 DIAG SEL LAR R/W *

22 DIAG SINGLE CYC R/W *

23 SPARE R/W *

24 EBUS PARITY ERR H/R/C R/H

25 FREE QUEUE ERR R/C R/S

26 DATA PATH ERR R/C R/S

27 CMD QUEUE AVAIL R/S R/C

28 RSP QUEUE AVAIL R/C R/S

29
* *

30 DISABLE R/S R/C

31 ENABLE R/S R/C

32 MPROC RUN R/W R/H

33 PIAOO R/W R

34 PIA01 R/W R

35 PIA02 R/W R

* = NOT DEFINED
R = READABLE
W = WRITEABLE (SET OR CLEAR)

C = CLEARABLE ONLY
S = SETTABLE ONLY
H = HARDWARE CONTROLLED

Figure 4-1 Port Control and Status Register

The CSR is read/write interlocked to prevent the port and the KLIO
from accessing it at the same time. When the port wants to access
the CSR, it executes a request CSR microprocessor command. If the
register is available, the interlock is asserted. If the CSR is

not available because the KLIO is currently accessing the register
with a CONI or a CONO, the interlock is not asserted until the
CONI or CONO function is complete. The port microprocessor waits
until the interlock is asserted before it attempts to access the
CSR. In the same way, if the port microprocessor is accessing the
CSR when the KLIO executes a CONI or CONO, the CONO/CONI waits
until the port access is completed.

4-2

Table 4-1 Control and Status Register Bit Definitions

Bit Name Definition

00

06

PORT PRESENT

01 DIAG RQST CSR

02 DIAG CSR CHNG

03 UNUSED

4 RQST EXAM OR DEP

5 RQST INTERRUPT

CRAM PAR ERR

07 MBUS ERR

Indicates to the KLIO that the port is
installed and powered-up.

When set, this diagnostic bit indicates
that the port has requested access to the
CSR. ,

This diagnostic bit indicates that the
contents of the CSR have changed since it
was last read by the port microprocessor.

Not used by either the port microprocessor
or the KLIO.

Used by the port microprocessor to request
an EBus interrupt on PI level 00 (examine
or deposit function) . Setting this bit
immediately generates the interrupt
request.

Used by the port microprocessor to request
an EBus interrupt on PI levels 01 through
07. Setting this bit immediately generates
the interrupt request.

Indicates that a control RAM (CRAM) parity
error has been detected. If this bit is
set, the port microprocessor is
immediately halted and RQST INTERRUPT
(CSR05) is set. A hardware nonvectored (40
+ 2n) interrupt will be forced. A CRAM PAR
ERR may be forced in order to halt the
port microprocessor at a specific location
(break point) . The port microprocessor
cannot be restarted (CSR32 set) until this
bit is cleared.

Indicates that more than one MBus driver
has been turned on at the same time. That
is, more than one set of port logic is
trying to drive the MBus at the same time.
If this bit is set the port microprocessor
is immediately halted and RQST INTERRUPT
(CSR05) is set. A hardware nonvectored (40
+ 2n) interrupt will be forced. The port
microprocessor cannot be restarted (CSR32
set) until this bit is cleared.

4-3

Table 4-1 Control and Status Register Bit Definitions (Cont)

Bit Name Definition

08 UNUSED Not used by either the port microprocessor
or the KLIO.

09 UNUSED Not used by either the port microprocessor
or the KLIO.

10 UNUSED

11 IDLE

12 DISABLE COMPLETE

Not used by either the port microprocessor
or the KLIO.

Indicates that the port microprocessor is
in the idle loop, and is not hung in some
other microcode routine.

Informs the KLIO that the port
microprocessor has placed itself in the
disabled state.

13 ENABLE COMPLETE Informs the
microprocessor
enabled state.

KLIO that the port
has placed itself in the

14 UNUSED

15 PORT ID CODE 00
16 PORT ID CODE 01
17 PORT ID CODE 02

18 CLEAR PORT

19 DIAG TEST EBUF

20 DIAG GEN EBUS PE

Not used by either the port microprocessor
or the KLIO.

Three-bit port identifier code field.
Informs software that this is an NIA20
port and not an RH20 controller.
Hard-wired so that: 00 = 0, 01 = 1, 02 =

1.

When set by the KLIO, this bit resets the
port. The microprocessor is halted and all
pertinent registers and control logic are
placed in a reset state. The bit clears
itself after the reset function is
completed.

This diagnostic bit enables the KLIO to do
an EBus interface loopback function by
loading and reading the EBus buffer
(EBUF) . If the port is not running (CSR32
is reset) and this bit is set, a KLIO:

DATAO loads EBus data into the EBUF; DATAI
places EBUF data on the EBus;

This diagnostic bit enables the KLIO to
test the EBus parity checker by forcing it

to decode an EBus parity error. When this

4-4

Table 4-1 Control and Status Register Bit Definitions (Cont)

Bit Name

21 DIAG SEL LAR

22 DIAG SINGLE CYC

23 SPARE

24 EBUS PARITY ERR

25 FREE QUEUE ERR

26 DATA PATH ERR

27 CMD QUEUE AVAIL

28 RESP QUEUE AVAIL

Definition

bit is set, EBUS PAR ERR (CSR24) is also
set on the same CONO, assuming there was
no real EBus parity error.

This diagnostic bit enables a KLIO DATAI
to read the CRAM address contained in the
latch address register (LAR) . If this bit
is set and bits 19 and 32 are reset, then
the DATAI causes the LAR contents to be
asserted on EBus D01-D12.

This diagnostic bit enables the port
microprocessor to be single cycled. If
this bit is set and the KLIO sets MPROC
RUN (CSR32) , the port microprocessor
executes one microcycle and halts. MPROC
RUN will be cleared when the
microprocessor halts.

The current address to be executed is
fetched from the RAM address register
(RAR) . The next address to be executed is
stored in the LAR at the completion of the
microcycle. The KLIO must read the address
from the LAR and load it into the RAR
before executing the next single cycle.

Reserved for future software use.

When read by the KLIO, this bit indicates
that an EBus parity error has been
detected. When written as a 1 by the KLIO,
this bit will clear itself and CRAM PARITY
ERR (CSR06).

Used by the port to inform the port driver
that there are no free queue entries
available on the free queue.

Informs the port driver that the port
microprocessor has detected an error in
the direct memory access data path.

Used by the port driver to inform the port
that it has placed a command queue entry
on a previously empty command queue.

Used by the port to inform the port driver
that it has placed an entry on the
previously empty response queue.

4-5

Table 4-1 Control and Status Register Bit Definitions (Cont)

Bit Name

29 UNUSED

30 DISABLE

Definition

31

32

ENABLE

MPROC RUN

33 PIAOO
34 PIAOl
35 PIA02

Not used by either the port microprocessor
or the KLIO.

Used by the port driver to tell the port
to place itself in the disabled state (set
CSR12) .

Used by the port driver to tell the port
to place itself in the enabled state (set
CSR13) .

When set by the KLIO, this bit causes the
CRAM control register to reset and enables
the port microprocessor clocks. The port
starts cycling at the address contained in

the RAR. The next and subsequent addresses
will be fetched from the Am2910 sequencer.

Three-bit KLIO EBus physical interrupt
assignment (PIA) field (PI level 01
through 07)

.

4.3 EBUS
The port EBus control logic arbitrates the EBus protocol and the
port microprocessor protocol for interfacing to the EBus, and
performs synchronization between the two. Figure 4-2 shows
EBus-to-port interface. Figure 4-3 shows the EBus signals and
Table 4-2 describes the EBus signals.

^\

KLIO
EBOX

K
MUX

/\
E

MUX

» CSR

EBUF *

Figure 4-2

CRAMBAR

ADR
MUX

fiSEQ

\y^
LAR "

V
EBus-to-Port Simplified Block Diagram

4-6

c
KL10
EBOX

c

EBUS

CS00-CS06 (CONTROLLER SELECT)

R00-F02 (FUNCTION)

-CLK-

D00-D35 (DATA)

-DEMAND
-ACK (ACKNOWLEDGE)-
-XFER (TRANSFER)

P100-P107 (PRIORITY INTERRUPT)

-RESET
-DATA DISABLE-

CLOCK
DISTRIBUTION
MODULE

CLK n-

^

PORT

Figure 4-3 EBus Signals

Table 4-2 EBus Signal Description

Signal Direction

CS00-CS06 EBOX to port

Description

Select the port by device code during
a CONO, CONI, DATAO, or DATAI.
CS04-CS06 specify the channel number
during a PI SERVED and PI ADR IN.
CS00-CS03 select the port by its
physical number during a PI ADR IN.

F00-F02 EBOX to port Speci fy the EBus command
executed:

FOO--F02 Command
000 CONO
001 CON I

010 DATAO
oil DATAI
100 PI SERVED
101 PI ADR IN

to be

D00-D35 Bidirectional
data lines Transfer control and status

information between the EBOX and
port.

4-7

Table 4-2 EBus Signal Description (Cont)

Signal

DEMAND

ACK

XFER

DATA

DISABLE

RESET

CLK

Direction

EBOX to port

Port to EBOX

Port to EBOX

PI00-PI07 Port to EBOX

EBOX to port

EBOX to port

EBOX to port

Description

Causes the port to execute the
command specified by F00-F02.

Indicates the port has received and
is executing the EBus command; not
asserted during PI SERVED.

Indicates the port has executed the
EBus command; not asserted during PI
SERVED.

Signals a port interrupt request by
asserting the PIA (PI channel
assignment) loaded in the port with
a CONO.

When asserted, disables EBus data
line.

Disables drivers in the port to

allow diagnostic operations to
transfer diagnostic data.

Initializes the port.

Clock source for the port.

The KLIO has full control of the port only when the port

microprocessor is not running (MPROC RUN, CSR32 is reset).

With the port in this state, the primary functions of the KLIO are

to:

Load and read/verify the port microcode

Set up the correct initial CSR functions

Check for error conditions if the state of the port is due to

an ^unexpected halt.

When the microprocessor is not running, the KLIO can also perform

diagnostic functions, such as write and read/verify the E buffer,

generate bad parity, and single-cycle the port. The KLIO performs

these functions by executing CONOs, CONIs, DATAOs, and DATAIs,

which are processed by the port. The specific functions are listed

in Table 4-3. For a more detailed description of CRAM, RAR, and

LAR, see Chapter 5.

4-8

Table 4-3 KLIO Diagnostic Functions

Function

LOAD RAR

LOAD MICROWORD

READ MICROWORD

READ LAR

LOAD EBUF

READ EBUF

LOAD CSR

READ CSR

Description

Load RAR. If the KLIO executes a DATAO with bit
00 = 1, the next port CRAM address is loaded from
EBus D01-D13 into the port RAR.

If the KLIO executes a DATAO with bit 00 = 0, the
28 least significant bits of the EBus are loaded
into the selected half of the port CRAM location
specified by the contents of the RAR.

If the KLIO executes a DATAI and CSR21 = (not
DIAG SEL LAR) , the contents of the selected half
of the port CRAM location (specified by the
contents of the RAR) are placed on the EBus.

Read LAR. If the KLIO executes a DATAI and CSR21
= 1 (DIAG SEL LAR) , the CRAM address (contents of
the LAR) is placed on EBus D01-D12.

Load EBus Buffer. If the KLIO executes a DATAO
and CSR19 = 1 (DIAG TEST EBUF) , EBus D00-D35 are
loaded into the EBUF.

Read EBus Buffer. If the KLIO executes a DATAI
and CSR19 = 1 (DIAG TEST EBUF) , the contents of
the EBUF to be placed on the EBus.

Load CSR. If the KLIO executes a CONO, the
contents of the EBus are loaded into all of the
CSR bits writable by the KLIO.

Read CSR. If the KLIO executes a CONI, the
contents of all CSR bits readable by the KLIO are
placed on the EBus.

When the port microprocessor is running (MPROC RUN, CSR32 set) ,the KLIO can access the CSR only by executing CONO or CONI
commands. With the port in this state, CONO and CONI commands
(LOAD CSR and READ CSR) operate according to the description inTable 4-3.

The port ignores DATAO and DATAI instructions, executed by the
KLIO software while the port is running (CSR32 set), as unexpected
illegal functions. Therefore, an EBus timeout will occur, because
the port does not return EBus Transfer (XFER) . However, execution
of a DATAO or DATAI by the KLIO microcode in response to a
previous port examine or deposit request is not an illegal
function.

4-9

4.3.
When
EBus
EBus
lOP
API
lOP
inte
func
port

1 EBus Interrupts
the port is running, the port microprocessor controls the
by loading an lOP function control word (lOP word) into the
buffer and simultaneously generating an EBus interrupt. (The

word is identical to port error word 1 and equivalent to the
function control word.) (Figure 4-4 shows the format of the

word and Table 4-4 describes the bit functions.) The types of
rrupts that may be generated by the lOP word are listed by
tion. The hardware can generate all of the interrupts, but the
microcode currently uses only bits 0, 4, 5, and 7.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 1 8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
I I I I—

I

1

—

ADR
SPACE

I I

-1—r-

FUNC

J L

-1—

r

DEVICE

J I L _J

T 1 1 1
1—

I

1 1
1—

T

1
1—I—

r

INTERRUPT ADDRESS

I I I I I I I I l_J L

T—

r

' I I
I L

Figure 4-4 lOP Function Control Word

Bits

Table 4-4 lOP Function Control Word

Name

00-02 ADDR SPACE

Description

The address space containing the
location addressed by bits 13-35,
where:

= Executive process table (EPT)
1 = Executive virtual address space
4 = Physical memory

All other codes are reserved.

03-05 FUNC Function requested by the interrupt,
where:

06

Standard (40 + 2n) interrupt
1 Not used
2 Not used
3 Not used
4 DATAO (examine)
5 DATAI (deposit)
6 Not used
7 DATAO (examine and increment)

.

This formerly reserved function
enables the NIA20 to manipulate
queue interlocks.

A qualifier is interpreted according
to the function code, as follows:

4-10

Table 4-4 lOP Function Control Word (Cont)

Bits Name Description

Function Interpretation

0,7
4,5

Ignored
Q = 1, apply protection
and relocation to the
address specified by bits
14-35

07-10 DEVICE

11-12 00

12-35 INTERRUPT ADDRESS

Physical device number assigned by
the PI system.

The address at
handling begins.

which interrupt

If the EBus interrupt is an examine or deposit request (function
4, 5, or 7) , the port microprocessor requests the interrupt on PI
level 00. PI level 00 examine/deposit interrupt requests are
always processed by the KLIO (as highest priority), because PI
level 00 interrupts cannot be selectively enabled or disabled as
can interrupts on levels 01 through 07. Therefore, the KLIO
processes port examine and deposit requests regardless of the
enable or disable conditions of the KLIO PI system.

If the EBus interrupt is a function 0, the port microprocessor
requests the interrupt on PI level 01 through 07 (as assigned in
CSR bits 33-35) .

Steps 1 through 9 outline the interrupt sequence.

1. If a previous interrupt is still active, the port waits
before continuing.

2. The port then builds an lOP word and loads it into the
EBUF. With the same microword, it requests either a
standard interrupt or an examine or deposit interrupt.

Examine or deposit interrupt (function 4, 5, or 7):

The basic lOP words (less the interrupt address) for
examine and deposit requests are predefined in the port
local storage RAM. RQST EXAM OR DEP (CSR04) is set,
causing the port to assert EBus PI request line PIOO.

Standard (40 + 2n) interrupt (function 0)

:

The lOP word is all zeros for a standard interrupt
request. RQST INTERRUPT (CSR05) is set, causing the port
to assert the EBus PI request line (PI01-PI07) specified
by the port PI level (PIA00-PIA02, CSR bits 33-35).

4-11

3. When the KLIO EBOX recognizes the PI request it responds
by asserting

The port channel number on EBus CS04-CS06

PI SERVED (4) on EBus F00-F02

EBus DEMAND, after a delay determined by the KLIO.

4. The port responds by asserting the EBus data line
corresponding to the port physical device number (EBus
D07 for RH20 position 7, the CI20 position; or EBus DOS
for RH20 position 5, the NI port position.)

5. After a KLlO-determined delay, the KLIO EBOX reads the
EBus data lines and negates EBus DEMAND.

6. Next, the KLIO EBOX asserts:

The port channel number on EBus CS04-CS06

The port physical device number on EBus CS00-CS03

PI ADR IN (5) on EBus F00-F02

EBus DEMAND, after a KLlO-determined delay.

7. The port responds by asserting:

EBus ACKN (acknowledge)

The lOP word (previously loaded into EBUF by the port
microprocessor) on EBus D00-D35

EBus XFER, after a port-determined delay.

8. When the KLIO EBOX detects EBus XFER, it strobes the data

from the EBus data lines and negates EBus DEMAND.

9. The trailing edge of EBus DEMAND causes the port to

negate EBus ACKN, EBus XFER, and the EBus data lines.

4.3.2 Examine/Deposit Request Response
The KLIO microcode decodes the lOP word and executes the
appropriate function. If the lOP word specifies a port examine or
deposit request, then the first EBus cycle following the lOP word
read will be a DATAO or DATAI to the port. The examine/deposit
sequence is outlined in the following five steps:

1. The KLIO EBOX asserts

A device code of zero (000) on EBus CS00-CS06

DATAO or DATAI (2 or 3) on EBus F00-F02

4-12

Data on the EBus data lines, if a DATAO function

DEMAND, after a KLlO-determined delay.

2. The port responds by asserting EBus ACKN, and asserting
the EBus request condition code as a flag to the port
microprocessor. (Condition codes are described in detail
in Chapter 5.

)

The device code returned by the KLIO on EBus CS00-CS06 is
zero, not the port device code, and is ignored by the
port. The port does not examine the device code because
it expects that this EBus cycle is either a DATAO or
DATAI in response to its examine or deposit request.
Therefore, as soon as the port senses EBus DEMAND, and
when the port microprocessor detects the EBus request
condition code, it does one of the following:

In response to a DATAI, the port microprocessor
places data on the EBus. (It must have previously
loaded the data into the EBUF.)

In response to a DATAO, the port microprocessor reads
data from the EBus onto the MBus. On the same
microcycle, it strobes the data from the MBus into
internal storage.

3. After a port-determined delay, the port asserts EBus
XFER.

4. When the KLIO EBOX detects EBus XFER it negates EBus
DEMAND. If the function was deposit (DATAI), it strobes
the data from the EBus data lines. If the function was
examine (DATAO), it de-asserts the data from the EBus
data lines.

5. The trailing edge of EBus DEMAND causes the port to
negate EBus ACKN, EBus XFER, EBus request condition code,
and the EBus data lines (if a DATAI function).

For examine/deposit functions, the port microcode responds to the
EBus request condition code, in order to prevent EBus time-outs.
The port microprocessor does not attempt to execute additional
EBus transfers until it detects the negation of the condition
code.

4.4 CBUS
The port CBus control logic arbitrates the CBus protocol and the
port microprocessor protocol for starting and stopping the CBus,
and performs synchronization between the CBus and the port
mover/formatter. The CBus control logic also generates the clock
timing for the port. Figure 4-5 shows to CBus-to-port interface.

4-13

Figure 4-6 shows the CBus, Table 4-5 describes the CBus signals,

Figure 4-7 shows CBus timing, and Table 4-6 describes the CBus
cycles.

KL10
MBOX

/\

\7

C
IN

BUF

C
OUT
BUF

D
MUX

MVR/
FMTR

/\

CBUF

\7

Figure 4-5 CBus-to-Port Simplified Block Diagram

The CBus (channel bus) is a synchronous, high-speed, time-division

multiplexed, tristate data bus. It runs between the KLIO MBOX and

the channel devices (the port, in this case — see Figure 4-6 and

Table 4-5) . Each device on the CBus has a unique time slot. A CBus

data transfer has four cycles; select, request, wait, and data
(see Figure 4-7 and Table 4-6)

.

CBUS

te "^ri n

•SEL2

i»-SEL3 SELn ^

^ SEL 5

^ SEL 6

<•

i».SEL7

START

KLIO
MBOX

4 RESET

PORT

A N
{ D00-D35 (DATA) >

AD 1 C>-T- /I l-rT riADITW

41

4

PAR RIGHT (RIGHT PARITY)

CTOM (CONTROLLER TO MEM)

LAST WORD »•

„

4

DONE

STORE

ERROR- 1»

Figure 4-6 CBus Signals

4-14

Table 4-5

Signal

SEL 0-7

Direction

CBus Signals

Description

One line from the MBOX
to each CBus device

START Port to MBOX

RESET Port to MBOX

READY MBOX to port

Continuosly selects a

different one of eight CBus
devices. Defines the start of
the four data transfer cycles
(select, request, wait, data)
for the selected device.

Asserted by the port (during
its data cycle) to start a

data transfer. The port
asserts START during only one
data cycle of the data
transfer, and only if READY is
negated.

Asserted by the port during
the same data cycle that START
is asserted. Causes the MBOX
to:

Clear the data buffers
associated with the port

Reset the command list pointer
associated with the port to
the initial channel control
word

Negate all the port status and
data lines after the two
previous steps are completed.

Asserted by the MBOX (during a

data cycle) when it is ready
for a data transfer, and after
it detects START from the
port. For an output data
transfer, the MBOX has at
least one data word in its
buffer before asserting READY.

READY is negated after the
MBOX senses DONE and is
prepared to start another data
transfer. READY is also
negated by errors.

4-15

Table 4-5 CBus Signals (Cont)

Signal Direction

REQUEST Port to MBOX

Description

The asserted and negated
states of READY apply only
during data cycles. READY is

said to be asserted when it is

asserted during data cycles,
and negated when it is not
asserted during data cycles.
The state of READY between
data cycles is not pertinent.

The port asserts REQUEST
during its request cycle if

its CBus output buffer is full
(device read — data input to
the KLIO and its CBus input
buffer is empty (device write
— data output from the KLlO)

.

The port does not assert
REQUEST if:

The MBOX has not asserted
READY

The MBOX has asserted ERROR

The MBOX has asserted LAST
WORD during the current data
transfer

The port has
during the
transfer.

asserted DONE
current data

For a device read, the port
places data on the data lines
(during its data cycle) , and
the MBOX strobes the lines at
the trailing edge of the same
data cycle. For a device
write, the operation is

reversed.

D00-D35 Bidirectional data
lines Valid only during a data

cycle. If the port is not
requesting data from the KLIO,
the MBOX places zeros on the
data lines during the port's
data cycle.

4-16

Table 4-5 CBus Signals (Cont)

Signal Direction

LAST WORD MBOX to port

DONE Port to MBOX

STORE Port to MBOX

ERROR MBOX to port

Description

Asserted by the MBOX (during
the data cycle) only for
output data transfers at the
same time the last data word
is sent to the port. The port
does not assert REQUEST after
it detects LAST WORD.

Asserted by the port during
its data cycle to terminate a
data transfer. The port does
not assert REQUEST after it
asserts DONE.

Asserted by the port (during
the data cycle, together with
DONE) to store channel status
in the channel's assigned
reset and status logout area.
STORE is asserted when the
current transfer is terminated
because of a port-detected
error and the port microcode
specifies that STORE be
asserted.

Asserted by the MBOX (during
the data cycle) to tell the
port to terminate the current
data transfer because of an
MBOX detected error. When the
port senses ERROR, it
terminates the transfer by not
asserting REQUEST, and
asserting DONE in a subsequent
data cycle.

4-17

nn

n J~L n n. nn n n nn n nn n n

o. HL n
^1 n nn n

-START UP-

n. J~L
n

-DATA TRANSFER-

J~Ln

n.n

n.n

n

KL10

CLOCKS jinjTiinnnnjinnnnjiJirinRii^^
SEL
CYCLE
REQUEST
CYCLE
WAIT 1
CYCLE I

DATA
I I

CYCLE -' •-

START J L

RESET

CTOM

READY

REQUEST

DATA
LAST
WORD

DONE

STORE

TERMINATION-

JIL

Figure 4-7 CBus Operation

Table 4-6 CBus Cycles

Cycle Description

SELECT There is a SEL line for each device on the CBus. The
KLIO asserts CBus SELECT for the port when the port's
time slot occurs. The port CBus control logic senses
when its SEL line is active.

REQUEST The port asserts CBus REQUEST during the entire request
cycle time if the port has detected its SEL line active
and is ready to make a data transfer. Otherwise, the
port ignores this CBus data transfer.

WAIT This is a dummy cycle for the port. It does not execute
any CBus functions.

DATA If data is to be transferred in this CBus data transfer
slot, it is placed on the CBus data lines by either the
KLIO (output data transfer) or the port (input data
transfer) during the data cycle time. Otherwise, the
port ignores the data cycle.

The port microcode prepares to start the CBus data channel by
executing a start CBus microprocessor command. For an input data
transfer to the KLIO memory, the port microcode also executes a

write to KLIO memory microprocessor command. The CBus control
logic latches these microprocessor commands until they can be

4-18

executed when the port CBus time slot becomes available. The CBus
control logic detects the port time slot by sensing its CBus SEL
line.

When the GBus control logic detects the port CBus SEL line
asserted and the CBus READY line negated, it starts the channel by
using the latched start CBus microprocessor command to assert CBus
START and CBus RESET during the subsequent data cycle. The CBus
control logic then clears the appropriate latches set by previous
port microprocessor commands. If the transfer is to KLIO memory,
the CBus control logic also uses the latched write to KLIO memory
microprocessor command to assert CBus CTOM at this time. However,
it does not clear the latch set by the write to KLIO memory
microprocessor command until the data transfer is complete.

When the channel (i.e., KLIO) is ready to transfer data over the
CBus, it asserts CBus READY during the port data cycle.

After receiving CBus READY, the port CBus control asserts CBus
REQUEST during its request cycle whenever it requires a data word
from the channel (device write) , or whenever it requires that the
channel accept a data word (device read) . The words are asserted
on the CBus DATA lines during the port data cycle following its
corresponding request cycle.

The port is ready to transfer data across the CBus whenever its
CBus input buffer is empty, or whenever its CBus output buffer is
full.

The CBus input buffer is emptied (transferred to the
mover-formatter) with a CBus input buffer to formatter command
microprocessor when the port microprocessor senses the CBus
available condition code and is prepared to accept data from the
CBus.

The CBus output buffer is loaded (the contents of the
mover-formatter are transferred to it) with a formatter to CBus
output buffer microprocessor command when the port microprocessor
senses the CBus available condition code and has data available
for transfer to the CBus.

When the channel places the last word on the CBus during a device
write operation, it asserts CBus LAST WORD. In response, the port
CBus control logic asserts the CBus last word condition code. When
the port microprocessor detects this condition code, it responds
with a stop CBus microprocessor command. This causes the port CBus
control logic to assert CBus DONE during the next port data cycle.
The port makes no more data requests during subsequent request
cycles. CBus DONE causes the channel to terminate the operation.
CBus READY is negated when the channel is prepared to begin
another data transfer.

4-19

The port microprocessor can also execute a store CBus status
information microprocessor command with a stop CBus command on the
same microcycle. This causes the port CBus control logic to assert
CBus STORE along with CBus DONE on the next port data cycle.
Asserting CBus STORE and CBus DONE during the same data cycle
forces the channel to store channel status in the channel's
assigned reset and status logout area.

The port microprocessor executes both the stop CBus microprocessor
command and store CBus microprocessor command, causing the port
CBus control logic to assert CBus DONE and CBus STORE when it has
transferred all data over the CBus during a device read operation.
The port microprocessor also executes these commands during a read
or write when it detects one of the following transfer error
conditions (described in more detail in section 5.2):

CBus parity error
Mover/formatter parity check
CBus channel error
PLI parity error.

The port makes no more data requests during subsequent request
cycles.

4.5 PLI
The port PLI control logic arbitrates the PLI protocol and the
port microprocessor protocol for accessing the PLI, and performs
synchronization functions between the PLI and the CMVR module.
Figure 4-8 shows the PLI-to-port interface and Table 4-7 shows the
PLI signals.

z\

• CBUF

MVR/
FMTR

C
MUX

\7

SD
MUX

/\
P
MUX

PLI

OUT
BUF

SU
MUX

PLI

IN

BUF

\Z

Figure 4-8 PLI-to-Port Simplified Block Diagram

4-20

tJfff"

Table 4-7 PLl Signals

Direction
Signal Port Link Lines Logic

DATA (7:0) <—

>

8 TRI-ST
SELECT > 1 TTL

(?U''-RCVR ATTENTION < 1 TTL
END OF FRAME < 1 TTL
XMTR ATTENTION < 1 TTL
PLI/LINK CONTROL > 4 TTL
TRANSMIT PARITY > 1 TTL
RECEIVE DATA PARITY < 1 TTL
CLOCK > 1 TTL
INITIALIZE > 1 TTL

TTL
TTL'gRA^lSM-i-'P-^STATUS — —<r— «^

^^ ^

The PLI interface provides the means for data transfers and
communications between the port and the NIA to occur. The port has
a master/slave relationship with the NIA. All data traffic and PLI
functions are controlled by the port.

The following signal descriptions refer to some logic circuitry
that has not been previously defined. (Chapter 5, Logic
Description, contains additional information.)

4.5.1 PLI Interface Signals
The PLI interface signals are shown in Table 4-7.

4.5.2 Data (7:0) (Asserted High)
These lines are used to transfer data to and from the NIA and to
pass control and status information to and from the NIA. The
PLI/link control lines determine the direction and type of
information being transferred.

4.5.3 Select (Asserted Low)
The select line must be asserted by the port to execute all data
transfers and control functions. This line acts as an enable for
the PLI/link control lines. The NIA provides a pullup resistor on
this signal so that, if the port is not installed, the NIA does
not respond to the floating control lines.

4.5.4 Receiver Attention (Asserted High)
RCVR ATTENTION is a PLI signal to the port. When asserted, it
indicates that the receive status register contains a valid status
on the next frame to be unloaded from the receive buffer. It also
signifies that the frame buffer addresses are available on the
used buffer list.

4-21

Receiver attention is asserted when the destination address of the
frame is equal to the address stored in the physical address
register or the multicast bit is set in the destination address of
the frame. It is cleared by the reset receiver attention command
(explained in Section 4.5.7.8).

4.5.5 End of Frame (Asserted High)
END OF FRAME is a signal to the port (data mover). When asserted,
it indicates that the previous byte of data read from receive
memory was the last byte of the frame. End-of-frame signal timing
is the same as the data. The signal is asserted for one port clock
cycle.

4.5.6 Transmitter Attention (Asserted High)
XMTR ATTENTION is a signal to the port processor. When asserted it
indicates that the transmit status is available on the last frame
transmitted and that the transmit buffer is available for the next
frame to be loaded. Transmitter attention is cleared by the read
transmit status command.

4.5.7 PLI/Link Control (Asserted High)
Four PLI/link control lines originating at the port are used to
control the interface activities of the NIA. Control lines,
denoted by asterisks, utilize the data lines to pass auxilary
control information to the NIA. The SELECT line must be asserted
to make the control lines valid. The control lines are encoded as
shown in Table 4-8.

Table 4-8 Link Control Signals

Function PLI/Link Control
»! I.M .I.I .11 .! — III II ! » M il. !— "-I. -II I I N I- I I

I—^^^———.MW*—I^^W*

WT XMIT BUF* 1100
XMIT ACTION* 0110
RD XMIT STATUS 1101
RD REC BUF 0010
RD REC STATUS 1110
RD USED BUF LST 1011
REC TO XMIT BUF 0011
RESET REC ATT 0111
ENABLE LINK CNTL* 1000
DISABLE LINK CNTL* 1001
WT REC BUF ADRS* 0101
WT FREE BUF LST* 0100
CLR RCV BUF 0001
WT ADRS* 1010
RD REG 0000
WT REG* 1111

* Control lines use the data lines to pass auxiliary control
information to the NIA.

4-22

4.5.7.1 Write Transmit Buffer (WT XMIT BUP) — The write transmit
buffer function causes the data presented on the data lines and
its associated parity bit to be written into the transmit buffer.
The end~of-frame bit is always written as a zero. The buffer
address counter will be incremented at the end of each cycle in
which the load transmit buffer command is present. The load
transmit buffer command is necessary for each byte transfer to the
NIA.

4.5.7.2 Transmit Action (FOUR COMMAND) Group — The transmit
action command is a set of four commands whose action depends upon
the state of port data bits and 1. The four transmit action
commands and corresponding data bit coding are shown in Table 4-9.

Table 4-9 Transmit Action Command Group

Command
Name

Port Data Bit
1

XMIT FRAME

RESET TX BUF ADRS

TX BUF DEC

1

1

WT TX EOF

Command Command Name Function

XMIT FRAME Transmit Frame

RESET TX BUF ADRS Reset Transmit
Buffer Address

Informs NIA to begin
transmission of frame
stored in the transmit
buffer; also clears the
transmit status register.

Resets the transmit buffer
address counter to 0.

TX BUF DEC Decrement Transmit
Buffer Address

Causes the transmit buffer
address counter to be
decremented one count.

WT TX EOF Write Transmit Buffer Causes end-of-frame bit to
End-of-Frame Flag be written as a one into

the transmit buffer at the
current address of the
transmit buffer address
counter

.

4-23

4.5.7.3 Read Transmit Status (RD XMIT STATUS) — This function
enables the contents of the transmit status register onto the data
lines. The transmit attention signal is cleared. (The transmit
status register is described in Chapter 5.)

4.5.7.4 Read Receive Buffer (RD REC BUF)
This function enables the contents of the currently addressed
location in the receive buffer onto the data lines. The read
address counter is incremented at the end of each cycle in which
this function is asserted. The parity bit for read data is passed
to the port with the data on the receive data parity line.

The data is available from the receive buffer sequentially from
the first byte received to the last byte received.

The port must, while reading the receive packet, monitor the
signal END OF FRAME to determine when the last byte of the frame
has been read.

4.5.7.5 Read Receiver Status Register (RD REC STATUS) — This
function enables the contents of the receive status register onto
the data lines.

NOTE
The receive attention signal must be
asserted in order to obtain a valid
receive status. The contents of the
receive status register are described in
Chapter 5.

4.5.7.6 Read Receive Memory Used Buffer Address List (RD USED BUF
LST) — This command enables the first byte of the used buffer
address list onto the data lines. The list contains addresses of
data buffers used by the NIA during frame reception. They are
provided to the port in the order that they were used by the NIA.

4.5.7.7 Transfer Byte from Receive Memory to the Transmit Buffer
(REC TO XMIT BUF) — This command causes the NIA to transfer one
byte of data and its parity bit from the currently addressed
location in receive memory to the currently addressed location in
the transmit buffer. Both address counters are incremented at the
end of each cycle when this command is executed.

4.5.7.8 Reset Receive Attention (RESET REC ATT) — This command
clears the receive attention signal. When this function is

executed, the current receive status is lost. If there is another
frame in the receive buffer, the status for that frame will be
available when the receive attention signal is reasserted.

4.5.7.9 Enable Link Control/Disable Link Control — These
functions are used to enable and disable certain long-term
functions in the NIA. A particular control may be set by executing
ENABLE LINK CNTL with a 1 in the data line bit position

4-24

corresponding to that control. A control may be cleared by
executing DISABLE LINK CNTL with a 1 in the proper bit position.
Transfers with a in any bit position have no effect.

4.5.7.10 Write Receive Memory Buffer Read Address to the Read
Memory Address Register (WT REC BUF RD ADRS REGISTER) — This
command causes the data presented on the data lines to be written
into the receive buffer read address register. The buffer address
is combined with the read-receive-memory address counter to form a
14-bit address. All of the lower order bits are set to 0.

4.5.7.11 Write Free Buffer List (WT FREE BUF LST) — This command
causes the data presented on the data lines to be written into the
free buffer list. It informs the NIA of free buffers in receive
memory that are available (free) to store received data packets.
The NIA uses the buffer addresses in the order they were received
and combines them with the wr ite-receive-memory address counter to
form a 14-bit address.

4.5.7.12 Clear Receive Buffer (CLR RCV BUF) — This command clears
the entire free buffer list, used buffer list, and receive status
first in, first out (FIFO) . The command must be executed whenever
a free buffer list parity error is detected. After the execution
of this command, the free buffer list must be reloaded with buffer
entries.

4.5.7.13 Write Address Register (WT ADRS REG) — When this
function is executed, the data lines must contain the address of
the register or buffer to be accessed. The NIA will save the
address. The transfer to or from the desired register will be
executed when the RD REG or the WT REG command is given. Table
4-10 lists the registers and buffers available through the address
register.

4.5.7.14 Read Register (RD REG) — This function places the data
of the register/buffer, whose address is stored in the address
register, onto the data lines.

4.5.7.15 Write Register (WT REG) — This function takes the data
placed onto the data lines and writes it into the register/buffer
whose address is stored in the address register.

4.5.8 Transmit Parity (Odd) (TTL Asserted High)
Odd parity is calculated by the port and transferred to the NIA
using this line. The NIA stores the parity as supplied and checks
parity when reading the buffer during a transmission.

4.5.9 Receive Data Parity (Odd) (TTL Asserted High)
Data being read from the receive buffer includes a parity bit that
was generated before the data was written into the buffer. This
parity bit is conveyed to the port via the receive data parity
line and must be checked by the port.

4-25

Table 4-10 Write Address Register Access Table

ADRS (HEX) Register Buffer WT REG RD REG

PHY ADRS REGOX
PHY ADRS REG 1 X
PHY ADRS REG 2 X
PHY ADRS REG 3 X
PHY ADRS REG 4 X
PHY ADRS REG 5 X
N/A
PHY ADRS ROM — X
PHY ADRS ROM 1 — X
PHY ADRS ROM 2 — X
PHY ADRS ROM 3 — X
PHY ADRS ROM 4 — X
PHY ADRS ROM 5 — X
N/A
XMIT BUF RD — X
REC MEMORY WT X
TDR REG LO X
TDR REG HI X
COLLISION TEST REG — X
NA

00*
01*
02*
03*
04*
05*
06 & 07
08
09
OA
OB
OC
OD
OE & OF
10
11*
12
13
14
15 THRU FF

* The enable link bit in the link control register must equal to
access these addresses.

4.5.10 Clock Timing (PLI Bus)
The NIA interface requires a clock source from the port for its
operation. The interface will operate with a minimum cycle period
of 165 ns, as shown in Figure 4-9.

4.5.11 Initialize (TTL, Asserted High)
This signal from the port is used to initialize the NIA. A pullup
resistor will be provided on this signal so that, if the port is
not installed, the NIA will not interfere with the NI bus. The
initialize signal must be asserted during power-up.

4.5.12 Receive and Transmit Status
These signals reflect the state of the receive and transmit status
registers. They are brought out to backplane pins on the NIA link
module. They are enabled with the receive and transmit attention
signals. Chapter 5 contains a detailed description of the eight
status bits.

4.6 SIMPLIFIED NIA BLOCK DESCRIPTION
This section uses the simplified NIA block diagram shown in Figure
4-10 to give an overview of the basic NIA functional operations:
transmit a frame and receive a frame.

4-26

200 NS MAX
165 NS MIN

PORT CLOCK

PORT TO NIA

CONTROL

+

SELECT

PORT TO NiA

DATA +
PARITY

NIA TO PORT

FROM CONTROL +
SELECT

DATA +
PARITY

NIA TO PORT

ATTENTION
(ANY)

^

F50 NS.
MIN

L 45 NS
r MIN

45 NS J
MIN 1

44 NS MIN

M
H K 30 NS MIN

Figure 4-9 Clock Timing

The NIA module is functionally divided into a transmit section and
a receive section, with a CRC function shared between the two. Not
all logic blocks discussed in the following transmit and receive
descriptions are shown on the simplified block diagram (status
registers, counters, and address buffers). For this discussion,
they are assumed. Chapter 5 presents the detailed NIA block
diagram with. a description of each subblock,

4.6.1 Simplified Transmit Operation
The port initiates a transmit function by setting the proper data
and conditions in the NIA and issuing a transmit command. It then
waits for the NIA to perform the transmission and assert Transmit
Attention, which alerts the port to read the transmit status
register and take appropriate action.

Initially, the port resets the transmit buffer address to zero,
using the RESET TX BUF ADRS command. The port then loads the
transmit buffer with 8-bit bytes and parity. The last word also
sets bit 10 (bit 10 « load last byte = end-of-f rarae)

.

1. SELECT enables the link control lines.

4-27

2. The command WT XMIT BUF (via PLI/link control lines)

causes the data on lines (7:0) to be written in the
transmit buffer (plus parity)

.

3» Each write command automatically increments the address
counter after writing the byte.

4. The command WRITE TX EOF writes the end-of-frame bit in

the last location.

PORT

PLI

BUS

^ X-MIT
BUFFER
2KX 10

^ CONTROL
REG.S

^ RECEIVE
MEMORY
16KX 10

RECEIVE
STATE

X-MIT
STATE

SERIALIZER

CRC
GEN
/CHK

DE-SERIALIZER

ECL

XMIT
PAIR

RCVR
PAIR

^ COLLISION
PAIR

XCVR
POWER

H
4000
XCVER

f
COAX

RETRY

Figure 4-10 Simplified NIA Block Diagram

After the transmit buffer is loaded, the port initiates
transmission by asserting the command XMIT ACTION on the PLI/link
control lines, along with XMIT FRAME on the data lines. This
command

1. Clears the transmit status register (last transmission
status conditions)

2. Resets the transmit buffer address counter back to zero,
(actually -8 to allow for the preamble, which is

transmitted first)

4-28

3. Enables the NIA to transmit the frame from the transmit
buffer.

The port now enters the idle loop and waits for the NIA to perform
the transmission and assert XMIT ATT. The port can also receive
and process other commands while waiting for XMIT ATT.

Upon receiving the command XMIT FRAME, the NIA checks to see if it
is free to transmit. If carrier is present, meaning the wire is
busy, the NIA defers and waits an additional 9.6 ms. When free to
transmit, the NIA will start by reading the preamble ROM. The
8-bit ROM bytes are read out in parallel and serially shifted
through the Manchester encoder (not shown, but in the emitter
control logic section) and transmitted onto the wire.

Without allowing gaps

When the end-of-frame is detected (bit 10 set in the last byte
read from the transmit buffer) , the 32-bit CRC that was being
generated is serially appended and transmitted.

During the transmission, the collision detect circuitry is
monitered. If a collision was not detected and no other problems
occurred, the transmit status bits will indicate a successful
transmission on the first attempt. If a collision was detected,
normal transmission is stopped, a short jam is transmitted, and
the retry circuitry is enabled. Since the data is still in the
buffer, it is available for retransmission (after a short, random
delay) . Again, the transmit status bits indicate to the port the
action and conditions of the data transmission. After the frame
has been transmitted, the NIA looks for the heartbeat signal from
the transceiver. This signal indicates that the collision detect
circuitry is working properly; if a collision had occurred, it
would have been detected.

After the frame is transmitted, the NIA must complete the
operation. During the transmission the NIA would have set bits in
the transmit status register to specify the activities that
occurred, either correct or faulty. The transmit status register
contents can inform the port with the following terms:

DEFER — Link had to defer to existing traffic on the wire before
transmitting.

TRANSMIT RETRY STATUS — The following transmit retry statuses are
given:

1. Message transmitted on first attempt (no collisions).

4-29

2. Message transmitted on second attempt.

3. Message transmitted at some attempt after the second.

4. Message failed to transmit in 16 attempts, due to

repeated collisions.

TRANSMIT ON TOO LONG — Transmitter was on longer than it would
take to transmit the longest valid frame, (asserted after 1536
bytes have been transmitted)

.

COLLISION INPUT FAILED — Transceiver failed to assert the
heartbeat signal after frame was transmitted.

TRANSMIT PARITY ERROR — NIA detected a parity error while reading
data from the transmit buffer (remainder of transmission aborted)

.

LATE COLLISION — A collision occurred after the slot time of the

channel has elapsed (no retries attempted and transmission
aborted) .

LOSS OF CARRIER — Carrier not present on the channel throughout
the transmission or the carrier dropped during transmission (the
remainder of retrys are aborted) .

The NIA completes its operations by asserting XMIT ATT to the

port. Upon receiving XMIT ATT, the port exits from the idle loop,

reads the transmit status register, and takes the appropriate
action as indicated by the conditions given in the status bits.

Normally, the port builds a response and puts it on the response
queue to the port driver. Figure 4-11 shows the basic functions of

a transmit operation summarized in a sequence flow diagram.

4.6.2 Simplified Receive Operation
At Startup, when the port initializes the NIA, it sets initial

conditions and returns to the idle loop. The NIA functions

independently, receiving incoming frames and notifying the port by

asserting RECEIVE ATTENTION. Initialization steps performed by the

port include:

1. Clear the used buffer list (FIFO)

2. Load the free buffer list (FIFO) with addresses to be

used during NIA frame reception

3. Set up the receive memory organization (usually 32 bit by
512 byte buffers)

4. Enable the NIA to receive frames (via link control
register) .

4-30

START

'

NO

LOAD XM IT BUFFER

'

WAS IT LAST BYTE ?

YES

WTEOF

' '

XMIT FRAME

'

XMITR ATTENTION ?

1

YES

READ XMIT STATUS

'

DONE

NO

Figure 4-11 PLI Interface Transmit Flow Diagram

The NIA receive state machine rests in the idle mode, waiting to
detect a carrier (activity) on the wire. When a carrier is
detected, the receiver synchronizes on the incoming preamble and
looks for the start signal, which is two consecutive ones.

The receive shift deserializer accepts the Manchester decoded
serial bit stream and parallel-loads the data bytes (including a
calculated parity bit) into the receive memory buffer. It loads
the memory at the buffer address supplied from the next free
buffer list of addresses. It also compares the incoming
destination to the internal address, in search of a match. The
serial bit stream is also sent to the CRC generator/checker.

If no match occurs, and it is not a broadcast or multicast
address, the frame is not intended for this node. The NIA will
discontinue writing into receive memory, reset the address counter
to the beginning of the buffer, wait for no-carrier, and return to
the idle state.

4-31

If a match condition had occurred, or the destination address was
a broadcast or multicast address, the NIA must load the entire
frame into the receive memory buffer. Each byte loaded will
automatically increment the write counter, which contains the 8

low-order bits of the 14 memory addressing bits.

When a buffer boundary is encountered (i.e., 512 bytes have been
received) , the current buffer address (six high-order addressing
bits) is transferred from the free buffer list to the used buffer
list. The next address from the free buffer list (FIFO) is used to
continue writing received bytes into memory.

When the last incoming bit is received, the carrier sense circuit
detects the end of signal activity on the wire. This initiates the
following events:

1. The NIA writes the end of frame, bit 10, in the next
receive buffer location.

2. The CRC checker indicates CRC OK, (or CRC ERROR if bad
CRC was calculated)

.

3. The 8-bit receive status is written to the receive status
register (FIFO)

.

4. The current free buffer list address is removed from the
free buffer list and put in the used buffer list.

5. The NIA receiver is set to the idle mode to await the
next incoming frame.

6. The signal RECEIVE ATTENTION is asserted and sent to the
Port.

When the port receives RECEIVE ATTENTION it exits the idle loop
and processes the frame. The first step is to read the contents of
the receive status register, which contains the receive conditions
as seen by the NIA during frame reception. The eight status bits
can indicate the following conditions;

1. PACKET FRAMING ERROR — The frame did not contain a
multiple of 8 bits; the CRC value at the last byte
boundary was in error.

2. FRAME OVERFLOW ERROR — The frame received was longer
than the longest valid frame (over 1536 bytes) .

3. CRC ERROR — The circuit calculated bad CRC on the
incoming frame.

4. FREE BUFFER LIST EMPTY — The NIA could not store (or
completely store) the incoming frame because no buffers
were available from the free buffer list.

4-32

5. BUFFER USED BITS 0,1, and 2 — The number of receive
buffers used to store the received frame (one to six,
depending on the frame size and memory organization being
used — 64/256, 32/512, or 16/1024).

6. FREE BUFFER LIST PARITY ERROR — The link has stopped
receiving frames due to corrupt data from the free buffer
list.

If an error exists, the port takes appropriate action. It may
decide to read (unload) the frame, or simply discard it (for
example, runt frames are usually discarded) . With no errors, the
port starts unloading the receive memory buffer. Notice that the
port now knows how many buffers were used to store the frame, by
reading the used buffer bits.

The port reads the used buffer list addresses to learn where the
frame is stored. It will then send the NIA the first memory
address location to be read by writing the address into the
receive memory read address register. The port will then execute a
read receive buffer command to the NIA. Within the NIA, the
receive memory buffer contents will be put on the port data lines
(7:0), parity on the separate parity line; the address counter is
automatically postincremented.

The port continues in this manner until 512 bytes have been read
out or end-of-frame is detected. After 512 bytes, the port must
write the next buffer address pointer to the receive memory read
address register before reading more received data bytes.

This process continues (another 512 bytes read, update pointer,
and so on) until the end of frame bit is detected. The
end-of-frame bit signals the port that the previous read command
produced the last byte of the frame. Since the port has the
desired frame data, it now writes the used buffer list addresses
to the free buffer list and resets receiver attention.

The port/NIA receive operation is now complete, but the port must
continue the receive operation by building a response to pass the
packet to the port driver. The NIA receive memory is time
multiplexed between the NIA and port. During receive operations,
the NIA can write a word and the port can read a word during one
port clock cycle. These simultaneous operations are performed at
different memory addresses and are independent. Also, in addition
to the error and status detection circuitry, the following
diagnostic and reliability features are employed:

1. The port can transmit a loopback frame. The data is
transmitted through the Manchester encoder and looped
back through the Manchester decoder and into the receive
memory buffer. The data is then read from the buffer by
the port.

4-33

2. The port can disable the CRC , which is used in the

loopback mode (where the CRC circuit is dedicated to the

receiver)

.

3. The port can transmit with its own address as the

destination (or include itself in a group address) . The

data is sent on the wire and received from the wire as in

normal operation. (In this case, the port must make
allowances for the single CRC generator/checker, as

explained in Chapter 5.)

4. The port can write data directly into the transmit buffer

or receive memory buffers and then read the buffers back

into the port.

5. The port can set promiscuous mode, which causes the

receiver to receive all frames, regardless of destination
address.

6. The port can set generate wrong parity on the data to be

written into the receive memory buffer to allow a check

of the parity check circuitry.

7. The port can read the time domain ref lectometry register,

which is useful in locating defective sections of cable.

8. The port can enable or disable the heartbeat signal.

9. The port can enable the collision test register (only in

internal loopback mode) to force collisions and immediate

retries (next slot time)

.

Figure 4-12 shows the basic functions of a receive operation

summarized in a sequence flow diagram.

4-34

START

'

RCVR ATTENTION ?
NO

YES

READ RCV STATUS

r

RD USED BUF ADRS LST

' _

UNLOAD FRAME ?
NO

r
-

WT BUF ADRS TO REC MEN
ADRS REGISTER

YES

END OF BUF ?

'
'

READ RCV BUFFER

'

END OF FRAME ?
NO

i
YES WT FRAME BUF

ADRS TO FREE
BUF LST

1

DISCARD LAST BYTE

i

RESET RCV ATTENTION

'

DONE

Figure 4-12 PLI Interface Receive Flow Diagram

4-35

CHAPTER 5

LOGIC DESCRIPTION

The first two sections of this chapter describe the function of
the major logic elements in the three port modules and the NIA
module:

1. M3001 EBus interface and port ALU module
2. M3002 port microprocessor control module
3. M3003 CBus interface and data mover module
4. L0072 Network Interconnect Adapter (NIA) module.

These major logic elements are shown on the block diagram that
accompanies each module description.

Section 5.3 of this chapter describes the port functions performed
by these logic elements and the microcode. It follows the
organization of the port microcode, describing initialization and
the idle loop, and the major functions performed out of the idle
loop: interrupts, CSR pocessing, transmit packet processing,
receive packet processing, queue manipulation.

5.1 EBUS INTERFACE AND PORT ALU MODULE

5.1.1 Introduction
This module provides a control and status interface (EBus
interface) between the KLIO and the port microprocessor. The KLIO
accesses this interface by executing DATAO, DATAI, CONO, and CONI
commands. The port microprocessor accesses this interface by
executing microprocessor commands. These microprocessor commands
are decoded functions of microword fields MWBUSCTLFLD and
MWMGCFLD. The port microprocessor monitors the status of the EBus
interface by sensing condition codes (described at the end of
Section 5.1.2)

.

The primary components of the EBus interface include

1. The control and status register (CSR). The CSR is
accessed by the KLIO and the port microprocessor to pass
control and status parameters from one to the other

2. A data path between the port microprocessor and the EBus.
This data path includes the EMUX, MBus, EBUF, and KMUX

3. The logic required to support the EBus protocol,
including the EBus interrupt sequence

4. Logic to load and start the port microcode

5. An EBus parity generator/checker

6. Logic to support various loopback and other diagnostic
functions.

5-1

In addition to the EBus interface, this module contains the
arithmetic and logic unit (ALU) for the port microprocessor, and a

multiplexer (CNST MUX) used to enter various constants to the ALU
from the control RAM (CRAM)

.

5.1.2 EBus Control and Status Register
The CSR is a 36-bit register used to pass control and status
information between the port microprocessor and the KLIO. The CSR
bits are shown in Figure 5-1, and described in Table 5-1, and in
the text following the table.

BIT

NO.

BIT DEFINITION RD/WR

KLIO PORT

00 PORT PRESENT R H

01 DIAG RQST CSR R H

02 DIAG CSR CHNG R/H H

03
* *

04 RQST EXAM OR DEP R/H R/S

05 RQST INTERRUPT R/H R/S

06 CRAM PARITY ERR R/C H

07 MBUS ERROR R H

08
* *

09
* *

10
* *

11 IDLE R R/W

12 DISABLE COMPLETE R R/W

13 ENABLE COMPLETE R R/W

14 * *

15 PORT ID CODE 00 R H

16 PORT ID CODE 01 R H

17 PORT ID CODE 02 R H

BIT

NO.

BIT DEFINITION RD/WR j

KLIO PORT

18 CLEAR PORT W

19 DIAG TEST EBUF R/W

20 DIAG GEN EBUS PE R/W

21 DIAG SEL LAR R/W

22 DIAG SINGLE CYC R/W

23 SPARE R/W

24 EBUS PARITY ERR H/R/C R/H

25 FREE QUEUE ERR R/C R/S

26 DATA PATH ERR R/C R/S

27 CMD QUEUE AVAIL R/S R/C

28 RSP QUEUE AVAIL R/C R/S

29 * *

30 DISABLE R/S R/C

31 ENABLE R/S R/C

32 MPROC RUN R/W R/H

33 PIAOO R/W R

34 PIA01 R/W R

35 PIA 02 R/W R

R
W
C
S
H

NOT DEFINED
READABLE
WRITEABLE (SET OR CLEAR)
CLEARABLE ONLY
SETTABLE ONLY
HARDWARE CONTROLLED

Figure 5-1 CSR Bits

5-2

Table 5-1 CSR Bit Description

Bit Name
Number

PORT PRESENT
CSROO

DIAG
CSROl

RQST CSR

DIAG CSR CHNG
CSR02

UNUSED
CSR03

RQST EXAM
OR CSR04

Function

Indicates that the port is present. The KLIO
always reads this bit as 1 if the port is
present (installed and powered-up) . The port
always reads this bit as 0.

This diagnostic bit indicates the status of
CCRQSTCSR.

Set By:

The port microprocessor requesting access to
the CSR (asserting MPRQSTCSR)

.

Cleared by:

Port microprocessor reading the CSR (asserting
MPREADCSR)

.

Port microprocessor writing the CSR (asserting
MPLOADCSR)

.

KLIO setting CLEAR (CSR18).
General EBus reset.

This diagnostic bit indicates that the
contents of the CSR have changed since it was
last read by the port microprocessor.

Set by:

KLIO writing the CSR (executing a CONO
function)

.

Detection of an EBUS PARITY ERROR (CSR24 set)

.

Cleared by:

Port microprocessor reading the CSR (asserting
MPREADCSR)

.

KLIO setting CLEAR (CSR18)

.

General EBus reset.

Not used by either the port microprocessor or
the KLIO.

Used by the port microprocessor to request an
EBus interrupt on PI level 00 (examine or
deposit function) . A PI level 00 interrupt is
immediately generated when this bit is set.

5-3

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number

RQST INTERRUPT
CSR05

CRAM PAR ERR
CSR06

Function

Set by:

Port microprocessor requesting an EBus examine
or deposit interrupt on PI level 00 (asserting
MPEXORDEP)

.

Cleared by:

Successful completion of the examine or
deposit sequence.

The KLIO setting CLEAR (CSR18)

.

General EBus reset.

Used by the port microprocessor to request an
EBus interrupt on PI levels 01 through 07. A
PI level 01 through 07 interrupt will be
immediately generated when bit is set.

Set by:

Port microprocessor requesting an EBus
interrupt on PI levels 01 through 07
(asserting MPRQSTINTR)

.

CRAM PAR ERR (CSR06 set)

.

MBUS ERR (CSR07 set)

.

Cleared by:

Successful
sequence.

KLIO setting CLEAR (CSR18)

.

General EBus reset.

completion of the interrupt

Indicates that a CRAM parity error has been
detected. If this bit is set the port
microprocessor is immediately halted and RQST
INTERRUPT (CSR05) set. A hardware nonvectored
(40 + 2n) interrupt will be forced.

CRAM PAR ERR may be forced in order to halt
the port microprocessor at a specific location
(breakpoint)

.

The port microprocessor cannot be restarted
(CSR32 set) until this bit is cleared.

Set by:

Detection of a CRAM parity error.

5-4

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number Function

Cleared by:

KLIO writing a 1 in EBus PARITY ERR (CSR24)

.

KLip setting CLEAR (CSR18)

.

General EBus reset.

MBUS ERR Indicates that more than one MBus driver has
CSR07 been turned on at the same time. That is, more

than one set of port logic is trying to drive
the MBus at the same time.

If this bit is set, the port microprocessor is
immediately halted and RQST INTERRUPT (CSR05)
set. A hardware nonvectored (40 + 2n)
interrupt will be forced.

The port microprocessor cannot be restarted
(CSR32 set) until this bit is cleared.

Set by:

The detection of more than one MBus driver
being on at the same time.

Cleared by:

The KLIO setting CLEAR (CSR18)

.

General EBus reset.

UNUSED Not used by either the port microprocessor or
CSR08 the KLIO.

UNUSBD Not used by either the port microprocessor or
CSR09 the KLIO.

UNUSED Not used by either the port microprocessor or
CSRIO the KLIO.

IDLE Indicates that the port microprocessor is in
CSRll the idle loop, and is not hung in some other

microcode routine. Useful for debugging and
troubleshooting

Set by:

Port writing a 1 in the bit.

5-5

Table 5-1

Bit Name
Number

CSR Bit Description (Cont)

Function

DISABLE
CSR12

COMPLETE

ENABLE
CSR13

COMPLETE

UNUSED
CSR14

PORT ID CODE 00
CSR15

PORT ID CODE 01
CSR16

Cleared by:

Port writing
KLIO setting
General EBus

a in the bit.
CLEAR (CSR18) .

reset.

This microcode(sof tware)-def ined bit is used
by the port to inform the KLIO operating
system that the port microprocessor has placed
itself in the disabled state.

Set by:

Port writing a 1 in the bit.

Cleared by:

Port writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

This microcode(software)-def ined bit is used
by the port to inform the KLIO operating
system that the port microprocessor has placed
itself in the enabled state.

Set by:

Port writing a 1 in the bit.

Cleared by:

Port writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

Not used by either the port CSR14
microprocessor or the KLIO

Bit 00 of the 3-bit PORT IDENT CODE field. The
KLIO always reads this bit as a if the port
is present (installed and powered-up) . The
port always reads this bit as a 0.

Bit 01 of the 3-bit PORT IDENT CODE field.
The KLIO always reads this bit as a 1 if the
port is present (installed and powered-up').
The port always reads this bit as a 0.

5-6

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number

PORT ID CODE 02
CSR17

CLEAR PORT
CSR18

DIAq TEST EBUF
CSR19

DIAG GEN EBUS PE
CSR20

Function

Bit 02 of the 3-bit PORT IDENT CODE field. The
KLIO always reads this bit as a 1 if the port
is present (installed and powered-up) • The
port always reads this bit as a 0.

this bit resets the
is halted and all

control logic are

When set by the KLIO,
port. The microprocessor
pertinent registers and
placed in a reset state.

Set by;

KLIO writing a 1 in the bit.

Cleared by:

Bit clears itself after the reset function is

completed.

This diagnostic bit enables the KLIO to do an
EBus interface loopback function by loading
and reading the EBUF. If the port is not
running (CSR32 is reset) and CSR19 is set,
then a KLIO DATAO loads EBus data into the
EBUF, and DATAI places EBUF data on the EBus.

Set by;

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

This diagnostic bit enables the KLIO to test
the EBus parity checker by forcing it to
decode an EBus parity error. When this bit is

set, EBUS PAR ERR (CSR24) is also set on the
same CONO, assuming no real EBus parity error.

Set by:

KLIO writing a 1 in the bit.

5-7

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number Function

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

DIAG SEL LAR This diagnostic bit enables the KLIO to read
CSR21 the latch address register (LAR) . If this bit

is set, the port is not running (CSR32 reset) ,

and the DIAG TEST EBUF (CSR19) is reset, then
a KLIO DATAI causes the LAR contents to be
asserted on EBus bits D01-D12. All other EBus
bits are undefined.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18) .

General EBus reset.

DIAG SINGLE CYC This diagnostic bit enables the port micro-
CSR22 processor to be single-cycled. If this bit is

set and the KLIO sets MPROC RUN (CSR32) , the
port microprocessor will execute one micro-
cycle and halt. MPROC RUN is cleared when the
microprocessor halts.

The current address to be executed is fetched
from the RAM address register (RAR) . The next
address to be executed is stored in the LAR at
the completion of the microcycle. The KLIO
must read the address from the LAR and load it

into the RAR before executing the next single
cycle.

NOTE
This bit must be reset for the KLIO to
read and write the CRAM correctly.

Set by:

KLIO writing a 1 in the bit.

5-8

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number Function

SPARE
CSR2 3

EBUS PARITY ERR
CSR24

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

Reserved for future software use.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

When read by the KLIO, this bit indicates that
an EBus parity error has been detected. When
written as a 1 by the KLIO, this bit will
clear itself and CRAM PARITY ERR (CSR06)

.

Set by:

The detection of an EBus parity error while
the port is reading data from the EBus.

Cleared by:

KLIO writing a 1 in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

This microcode(sof tware)-def ined bit is used
by the port to inform the port driver software
that there are no free queue entries available
on the message free queue or the datagram free
queue. The state of this bit has no hardware
function.

Set by:

Port writing a 1 in the bit.

FREE QUEUE ERR
CSR25

5-9

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number Function

DATA PATH ERR
CSR26

Cleared by:

KLIO writing a 1 in the bit,
KLIO setting CLEAR (CSR18)

.

General EBus reset.

This microcode (software)-defined bit is used
by the port to inform the port driver software
that it has detected an error in the DMA data
path (including the mover/formatter). The
state of this bit has no hardware function.

Set by:

Port writing a 1 in the bit.

Cleared by:

KLIO writing a 1 in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

This microcode (software) -defined bit is used
by the port driver software to inform the port
that it has placed a command queue entry on a
previously empty command queue. The state of
this bit has no hardware function.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

Port writing a 1 in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

This microcode (software)-defined bit is used
by the port to inform the port driver sofware
that it has placed a response queue entry on
the previously empty response queue. The state
of this bit has no hardware function.

Set by:

Port writing a 1 in the bit.

CMD QUEUE AVAIL
CSR27

RESP QUEUE AVAIL
CSR28

5-10

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number

UNUSED
CSR29

DISABLE
CSR30

ENABLE
CSR31

Function

Cleared by:

KLIO writing a 1 in the bit.

KLIO setting CLEAR (CSR18)

.

General EBus reset.

Not used by either the port microprocessor or
the KLIO.

This microcode (software) -^defined bit is used
by the port driver software to tell the port
to place itself in the disabled state (set
CSR12) . The state of this bit has no hardware
function.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

Port writing a 1 in the bit.

KLIO setting CLEAR (CSR18)

.

General EBus reset.

This microcode(software)-def ined bit is used
by the port driver software to tell the port
to place itself in the enabled state (set
CSR13) . The state of this bit has no hardware
function.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

Port writing a 1 in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

5-11

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number Function

MPROC RUN
CSR32

PIAOO
CSR33

PIAOl
CSR34

PIA02
CSR35

When set by the KLIO, this bit causes the CRAM
control register to reset and enables the port
microprocessor clocks. The port will start
cycling at the address contained in the RAR.
The next and subsequent addresses will be
fetched from the Am2910 sequencer (Y-outputs) .

Set by:

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

After each microword cycle if DIAG SINGLE CYC
(CSR22) is set.

CRAM PAR ERR (CSR06) or MBUS ERR (CSR07)
setting

.

General EBus reset.

Bit of the 3-bit KLIO EBus PIA field (PI 01

through 07)

.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

Bit 01 of the 3-bit KLIO EBus PIA field (PI

level 01 through 07)

.

Set by:

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

Bit 02 of the 3-bit KLIO EBus PIA field (PI

level 01 through 07)

.

5-12

Table 5-1 CSR Bit Description (Cont)

Bit Name
Number Function

Set by:

KLIO writing a 1 in the bit.

Cleared by:

KLIO writing a in the bit.
KLIO setting CLEAR (CSR18)

.

General EBus reset.

The KLIO accesses the CSR by executing CONO and CONI commands. The
port microprocessor accesses the CSR in the sequence described in
Section 5.1.3.2.

The CSR is read/write interlocked to prevent the port and the KLIO
from accessing it at the same time. This interlock is condition
code grant CSR (CCGRNTCSR) . When the port wants to access the CSR,
it executes a microprocessor request CSR (MPRQSTCSR) command. If
the register is available, CCGRNTCSR is asserted by the EBus
interface logic. If the CSR is not available because the KLIO is
currently accessing the register with a CONI or a CONO, CCGRNTCSR
will not be asserted until the CONI or CONO function is complete.
The port microprocessor must wait until it senses CCGRNTCSR
asserted before it attempts to access the CSR register. In the
same way, if the port microprocessor is accessing the CSR when the
KLIO executes a CONI or CONO, the EBus interface logic will cause
the command to wait until the port access is completed. Contesting
conditions between the port and the KLIO are prevented by granting
access to the KLIO at CLKl time and to the port (by asserting
CCGRNTCSR) at CLK3 time.

The port microprocessor (in the MPROC RUN state, CSR32 set)
accesses the CSR by executing the following sequence.

1. The port microcode first checks condition code interrupt
active (CCINTRACTIVE) . If it is asserted, the microcode
waits until it is de-asserted before continuing.

2. To write the CSR, the port microprocessor then executes a
microprocessor load EBUF (MPLOADEBUF) command to load the
CSR data into the EBUF. On the same microcycle it
executes an MPRQSTCSR command.

5-13

To read the CSR, the port microprocessor executes an

MPRQSTCSR command.

3. The port microprocessor then checks for CCGRNTCSR.

4. When CCGRNTCSR is valid, the port microprocessor executes
either a microprocessor load CSR (MPLOADCSR) or

microprocessor read CSR (MPREADCSR) command.

a. If an MPLOADCSR command is executed, the contents of

the EBUF are strobed into the CSR at CLK3 time.

b. If an MPREADCSR command is executed, the contents of

the CSR are asserted on the MBus. On the same
microcycle, the port microprocessor strobes the MBus
data into location TO of the Am2901 internal RAM.

5.1.3 EBus Control Logic
The EBus control logic arbitrates the EBus protocol and the port
microprocessor protocol for interfacing to the EBus, and performs
synchronization between the two. Figure 4-3 shows the EBus signals
listed and described in Table 4-2.

5.1.3.1 Port Microprocessor Not Running — The KLIO has full

control of the port only when the port microprocessor is not
running (MPROC RUN, CSR32 is reset). With the port in this state,
the primary functions of the KLIO are to:

1. Load and read/verify the port microcode

2. Set up the correct initial CSR functions

3. Check for error conditions if the port is in this state
because of an unexpected halt.

With the port in this state, the KLIO can also perform secondary
diagnostic functions, such as write and read/verify the EBUF,

generate bad parity, and single-cycle the port.

The KLIO performs these functions by executing CONOs, CONIs,
DATAOs, and DATAIs. The port's EBus interface processes these
functions via the normal EBus protocol. The EBus functions are
described in Table 5-2.

Function

LOAD RAR

Table 5-2

Description

EBus Functions

If the KLIO executes a DATAO with bit 00 = 1, a

DATOLOADRAR signal is generated. This signal
causes EBus bits D01-D13 to be loaded (via the
MBus) into the port RAR (located on the
microprocessor control module)

.

5-14

Table 5-2 EBus Functions (Cont)

Function

LOAD MICROWORD

READ MICROWORD

READ LAR

LOAD CSR

READ CSR

LOAD EBUF

READ EBUF

Description

If the KLIO executes a DATAO with bit 00 = 0, a
DATOLOADMW signal is generated. This signal
causes the 28 least significant bits of the
EBus to be loaded (via the MBus) into the
selected half of the port CRAM location
specified by the contents of the RAR.

If the KLIO executes a DATAI and CSR21 = (not
DIAG SEL LAR), a DATIREADMW signal is
generated. This signal causes the contents of
the selected half of the port CRAM location
(specified by the contents of the RAR) to be
placed on the EBus.

If the KLIO executes a DATAI and CSR21 = 1
(DIAG SEL LAR) , a DATIREADLAR signal is
generated. This signal causes the contents of
the LAR to be placed on EBus D01-D12.

If the KLIO executes a CONO, a CONOLOADCSR
signal is generated. This signal causes the
contents of the EBus to be loaded into all the
CSR bits writable by the KLIO.

If the KLIO executes a CONI, a CONIREADCSR
signal is generated. This signal causes the
contents of all the CSR bits readable by the
KLIO to be placed on the EBus.

If the KLIO executes a DATAO and CSR19 = 1

(DIAG TEST EBUF) , a TESTLOADEBUF signal is
generated. This signal causes EBus D00-D35 to
be loaded (via the MBus) into the EBUF.

If the KLIO executes a DATAI and CSR19 = 1
(DIAG TEST EBUF) , a TESTREADEBUF signal is
generated. This signal causes the contents of
the EBUF to be placed on the EBus.

5.1.3.2 Port Microprocessor Running — When the port
microprocessor is running (MPROC RUN, CSR32 set) , the KLIO can
access the CSR only by executing CONO or CONI commands. With the
port in this state, CONO and CONI commands (LOAD CSR and READ CSR)
operate as described in Section 5.1.3.1.

If the KLIO software executes DATAO or DATAI instructions while
the port is running (CSR32 set) , condition code CCEBUSRQST will be
asserted. This is an unexpected illegal function and is ignored by

5-15

the port. Therefore, an EBus timeout occurs because the port will

not return EBus transfer. A DATAO or DATAI executed by the KLIO

microcode in response to a previous port examine or deposit

request is not an illegal function.

5.1.3.2.1 EBus Interrupts — When the port is running, the port

microprocessor controls the EBus by loading an lOP function

control word (lOP word is equivalent to the API function control
word) into the EBUF and simultaneously generating an EBus

Interrupt. Figure 5-2 shows the format of the lOP word. The types

of interrupts that may be generated by the lOP word are listed by

function in Table 5-3. The hardware can generate all of the

interrupts, but the port microcode currently uses only 0, 4, 5,

and 7

.

00 01 02 03 04 05 06 07 08 09 10 11 1 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

—n-i—I—I—I—I—I—I—I—I—I—I—I—I—I—I—t—T—T—I—I—r-T—r-T i r—r—t—t r—t i i i

ADDR
SPACE
_J I

FUNC

_l I-

DEVICE

J I L l_

INTERRUPT ADDRESS
I I I I I I I I I 1 ' I I' I ' ' L—

I

1 L

Figure 5-2 lOP Function Control Word

Bit

Table 5-3 lOP Function Control Word Bit Description

Name

00-02 ADDR SPACE

03-05 FUNC

Description

The address space containing the

location addressed by bits 13-35,
where

= Executive process table (EPT)

1 = Executive virtual address space
4 = Physical memory
All other codes are reserved.

Function requested by the interrupt,
where

= Standard (40 + 2n) interrupt
(see Note)

1 = NOT USED
2 = NOT USED
3 = NOT USED
4 = DATAO (Examine)
5 = DATAI (Deposit)
6 = NOT USED
7 = DATAO (Examine and Increment)

.

This formerly reserved function
enables the CI20 to manipulate
queue interlocks.

5-16

Table 5-3 lOP Function Control Word Bit Description (Cont)

Bit

06

07-10

11-12

12-35

Name

Q

DEVICE

00

Description

A qualifier interpreted according to
the function code, as follows:

Function Interpretation

0,7
4,5

Ignored
Q = 1, apply protection

and relocation to the
address specified by
bits 14-35

Physical device number assigned by
the PI system.

INTERRUPT ADDRESS The address where interrupt handling
begins.

NOTE
(40 + 2n) means EPT location (40 + 2n) ,

where n is the PI level number. For
example, level 3 interrupts would
reference EPT location 46. The lOP word
for Function interrupts is all zeros.

If the EBus interrupt is an examine or deposit request (function
4, 5, or 7) , the port microprocessor requests the interrupt on PI
level 00 by executing the microprocessor examine or deposit
command (MPEXORDEP) . PI level 00 examine/deposit interrupt
requests are always processed by the KLIO (as highest
because PI level 00 interrupts cannot be selectively
disabled as can interrupts on PI levels 01 through 07.
the KLIO will process CI20 examine and deposit requests
of the enable or disable conditions of the KLIO PI system.

If the EBus interrupt is a function 0, the port microprocessor
requests the interrupt on PI level 01 through 07 (as assigned in
CSR33-35) , by executing the microprocessor request interrupt
(MPRQSTINTR) command.

The interrupt sequence is given in the following 10 steps:

1. The port microcode first checks condition code interrupt
active (CCINTRACTIVE) . If it is asserted, the microcode
must wait until the condition code is de-asserted before
continuing

.

priority)

,

enabled or
Therefore,
regardless

5-17

2. The port microcode then builds an lOP function control
word and loads it into the EBUF with a load EBUF
(MPLOADEBUF) command. With the same microword, it

executes a request examine or deposit (MPEXORDEP) command
or a request interrupt (MPRQSTINTR) command.

The basic lOP words (less the interrupt address) for

MPEXORDEP, functions 4, 5, and 7 are predefined in local
storage RAM.

An MPRQSTINTR, function is a standard (40 + 2n)

interrupt, and the lOP word is all Os.

3. MPEXORDEP or MPRQSTINTR

The MPEXORDEP command causes RQST EXAM OR DEP (CSR04) to

be set. This in turn causes the port EBus interface to

assert EBus PI request line PIOO.

The MPRQSTINTR command causes RQST INTERRUPT (CSR05) to

be set. This in turn causes the port EBus interface to

assert the EBus PI request line (PI01-PI07) specified by

the port PI level (PIA00-PIA02, CSR33-35) .

4. When the KLIO EBOX recognizes the PI request it responds
by asserting the following:

The port channel number on EBus CS04-CS06
PI SERVED (100) on EBus F00-F02
EBus DEMAND, after delay determined by the KLIO.

5. The port EBus interface responds by asserting the EBus
data line corresponding to the port physical device
number. (EBus D07 for RH20 position 7, the CI20 position,
or EBus DOS for RH20 position 5, the NI port position.)

6. After a KLlO-determined delay, the KLIO EBOX reads the

EBus data lines and negates EBus DEMAND.

7. Next, the KLIO EBOX asserts:

The port channel number on EBus CS04-CS06
The port physical device number on EBus CS00-CS03
PI ADR IN (101) on EBus F00-F02
EBus DEMAND, after a KLlO-determined delay

8. The port EBus interface responds by asserting:

EBus ACKN (acknowledge)

.

The lOP function control word (previously loaded into
EBUF by the port microprocessor) on EBus D00-D35.
EBus XFER (transfer) , after a port-determined delay.

5-18

9. When the KLIO EBOX detects EBus XFER, it strobes the data
from the EBus data lines and negates EBus DEMAND.

10. The trailing edge of EBus DEMAND causes the port EBus
interface to negate EBus ACKN, EBus XFER, and the EBus
data lines.

5.1.3.2.2 Examine/Deposit Request Response — The KLIO microcode
decodes the lOP function control word and executes the appropriate
function. If the lOP word specifies a port examine or deposit
request, then the first EBus cycle following the lOP word read
will be a DATAO or DATAI to the port. The sequence is outlined in
the following five steps:

1. The KLIO EBOX asserts:

A device code of zero (0000000) on EBus CS00-CS06
DATAO or DATAI (010 or Oil) on the EBus F00-F02
Data on the EBus data lines, if a DATAO function
DEMAND, after a KLlO-determined delay.

2. The port EBus interface responds by asserting EBus ACKN.
It also flags the port microprocessor by asserting
condition code EBus request (CCEBUSRQST)

.

The device code returned by the KLIO on EBus CS00-CS06 is
zero, not the port device code, and is ignored by the
port. The port does not examine the device code because
it expects that this EBus cycle is in response to its
examine or deposit request. Therefore, as soon as the
port senses EBus DEMAND, it does the following:

Upon detecting CCEBUSRQST the port microcode executes
either a microprocessor load EBus (MPLOADEBUS) command in
response to a DATAI, or a microprocessor read EBus
(MPREADEBUS) command in response to a DATAO.

If the port microcode executes MPLOADEBUS, it must have
previously executed MPLOADEBUF to load the EBUF with
valid data for transfer to the KLIO.

If the port microcode executes MPREADEBUS, the EBus data
is placed on the MBus. On the same microcycle, the port
microcode strobes the data from the MBus into one of its
internal storage media.

3. After a port-determined delay, the port EBus interface
asserts EBus XFER.

4. When the KLIO EBOX detects EBus XFER it negates EBus
DEMAND. If the function was a deposit (DATAI) , it strobes
the data from the EBus data lines. If the function was an
examine (DATAO) , it de-asserts the data from the EBus
data lines.

5-19

5. The trailing edge of EBus DEMAND causes the port EBus
interface to negate EBus ACKN, EBus XFER, CCEBUSRQST, and
the EBus data lines (if a DATAI function).

For examine/deposit functions, the port microcode responds
promptly to CCEBUSRQST, in order to prevent EBus timeouts. The
port microprocessor does not attempt to execute any additional
EBus transfers until it detects the negation of CCEBUSRQST.

5.1.4 Microprocessor to EBus Register
The microprocessor to EBus register (EBUF) is a 36-bit register
normally used by the port microprocessor to pass data from the
MBus (internal tristate microprocessor bus) to either the EBus or

the CSR. The port microprocessor usually loads data into the EBUF
from the MBus. On the next microcycle, the data is strobed from
the EBUF to either the CSR or the EBus. The major functions of the
EBUF are as follows:

1. To load the CSR. Data is first strobed into the EBUF,
then to the CSR.

2. To transmit an lOP word over the EBus for PI level 00
examine/deposit requests.

3. To transmit an lOP word over the EBus for PI levels 01-07
vectored and nonvectored (40 + 2n) interrupt requests.

Once the lOP word for a PI level 01-07 interrupt request
has been loaded into the EBUF, the port microcode
monitors condition code interrupt active (CCINTRACTIVE)

.

The port microprocessor does not load other data into the
EBUF until CCINTRACTIVE is de-asserted.

Data currently on the MBus is loaded into the EBUF at CLK3 time
with a microprocessor load EBUF (MPLOADEBUF) command.

A diagnostic loopback path, controlled by DIAG TEST EBUF (CSR19)

,

enables the KLIO to load and read the EBUF. If CSR19 is set and
the port microprocessor is not running (MPROC RUN, CSR32 reset)

:

1. A DATAO executed by the KLIO causes EBus data to be

loaded (via the MBus) into the EBUF.

2. A DATAI executed by the KLIO causes the data in the EBUF
to be asserted on the EBus.

5.1.5 EBus to Microprocessor Multiplexer (EMUX)

The EMUX is a two-input by 36-bit multiplexer that passes data to
the MBus from either the EBus or the CSR. The EMUX is enabled by
the port microprocessor or KLIO DATAO functions. Figure 5-3 is a

simplified diagram of EMUX control and data flow.

5-20

EBUS D

GND'

EBUS D

CSR **-

MPREADCSR

MPREADEBUS—

TESTLOADEBUF-

DATAOLOADRAR'

DATAOLOADMW'

OR

< MBUS D00-D35 >
D00-D35 D01-D13

EBUF

CLK

D06/D35

RAR

CLK CRAM

WREN

* 00-03,06-10,14-23,39
** 04-05, 11-13, 24-28, 30-35

MR-13758

Figure 5-3 EBus to Microprocessor Multiplexer

When the port is running (MPROC RUN, CSR32 set), the EMUX is
enabled with either a microprocessor read EBus (MPREADEBUS)
command or a microprocessor read CSR (MPREADCSR) command. The
MPREADCSR command also selects the CSR input to the EMUX. The port
microprocessor can then strobe the data from the MBus into
location TO of the Am2901 internal RAM.

When the port is not running (MPROC RUN, CSR32 reset) the KLIO can
enable the EMUX by executing DATAO commands to write the
following:

1. The CRAM (DATAOLOADMW)
2. The RAR (DATAOLOADRAR)
3. The E buffer via

(TESTLOADEBUF)

.

the diagnostic loopback path

NOTE
CSR input to the EMUX is not selectable
with KLIO DATAO commands.

5.1.6 Microprocessor to EBus Multiplexer (KMUX)
The KMUX is a two-input by 36-bit multiplexer that passes data to
the EBus from either the E buffer or the CSR. The KMUX is enabled
by either the port microprocessor or KLIO DATAI or CONI commands.
Figure 5-4 is a simplified diagram of KMUX control and data flow.

5-21

CRAM

i t-

CSR00-CSR35-

CONIREADCSR-

DATAIREADMW-

DATAIREADLAR-

TESTREADEBUF-

MPLOADEBUS—
lOPO

\ MWOUT /
-*\ MUX /

D06-D35

LAR

ENOUT

D01-D13

<^ MBUSD00/D35 ^
OR

DOO-D35

y.

EBUF

CLK

OR

1

SEL

EN

EBUS DOO-D35

Figure 5-4 Microprocessor to EBus Multiplexer

When the port is running (MPROC RUN, CSR32 set) the KLIO can
enable the KMUX to read the following:

The CSR, by executing CONI commands (CONIREADCSR)

The lOP word, by asserting PI ADR IN (101) on EBus F00-F02

during an interrupt sequence.

The port microprocessor can enable the KMUX to pass MBus data to

the EBus by executing a microprocessor load EBus (MPLOADEBUS)
command.

When the port is not running (MPROC RUN, CSR32 reset) the KLIO can

enable the KMUX, by executing DATAI or CONI commands, to read the

following

:

CRAM (DATIREADMW)
LAR (DATIREADLAR)
EBUF (TESTREADEBUF)
CSR (CONIREADCSR)

.

5-22

5.1.7 EBus Parity Generator
The EBus parity generator generates odd parity on every 36-bit
data word that the port passes to the EBus. Because the KLIO
architecture prohibits parity checking on an lOP word, the signals
EBUS PARITY and EBUS PARITY ACTIVE are inhibited when an lOP word
is transmitted on the EBus.

5.1.8 EBus Parity Checker
The EBus parity checker normally checks for odd parity on every
36-bit data word that the port reads from the EBus. If parity is
incorrect, the EBUS PARITY ERROR bit (CSR24) is set.

However, if DIAG GEN EBUS PE (CSR20) is set, the EBus parity
checker checks for even parity. Therefore (assuming normal odd
parity is correct) , the same CONO that writes CSR20 will also
cause CSR24 to be set.

5.1.9 EBus Transceivers
The EBus transceivers are the same type 8838 open collector
transceivers used by other devices that interface to the EBus.

5.1.10 Arithmetic Logic Unit
The ALU is logically part of the port microprocessor and is
located on the EBus interface/port ALU module. The ALU consists of

1. Nine type Am2901 four-bit bipolar microprocessor slices

2. Four type Am2902 high-speed look-ahead carry generators

3. Five type 74LS157 multiplexers used to input constants to
the ALU

The nine Am2901s and four Am2902s are connnected in a parallel
configuration, forming a 36-bit ALU with high-speed carry
look-ahead. Figure 5-5 is a simplified diagram of the nine
Am2901s.

The output of the ALU is connected directly to the MBus (see
Figure 5-5) . The data input is from the constant multiplexer
(described below) and the MBus or both.

CPUCLOCK (CLK4 gated by MPROC RUN, CSR 32) is the clock input to
the ALU.

For shift operations, zeros are always shifted into either the MSB
or the LSB, depending on the direction of the shift.

The port microprocessor controls the ALU by executing the commands
described in Table 5-4.

5-23

MWDESTFLDOO -

MWDESTFLD01 -

MWDESTFLD02 -

MWOUTPUTENA-

MWFUNCTFLDOO-

MWFUNCTFLD01 -

MWFUNCTFLD02-

MWCARRY

MWSORCEFLDOO-

MWSORCEFLD01 •

MWS0RCEFLD02-

CNSTOO-09
MBUS D10-D25 —
CNST26-35

CPOCLK

MWPORTAFLDOO-03

MWPORTBFLDOO-03

~^ MUX \

-& ALU

TV S

MUX

A LATCH • B LATCH

A ADR 16-LOC
B ADR RAM
EN

^
RAM \
SHIFTER
2X /2

I—I

—

T

Q
REGISTER

MQ SHIFTER
2X /2

MBUS D00-D35

-* CCMBSIGN

H*. CCFEQLO

Figure 5-5 AM2901 ALU Block Diagram (Simplified)

Table 5-4 ALU Control Commands

Command Description

MWSORCEFLD 00-02 The microword ALU source field, bits 24-26,
selects the source of the R and S inputs to
the ALU, as follows:

00-02

A Q
1 A B
2 Z Q
3 Z B
4 Z A
5 D A
6 D Q
7 D Z

5-24

Table 5-4 ALU Control Commands (Cont)

Command Description

Where:

A = The contents of the RAM location addressed
by MWPORTAFLD 00-03

B = The contents of the RAM location addressed
by MWPORTBFLD 00-03

D = The data on CNST 00-09, MBus 10-25, and
CONST 26-35

Q = The contents of the Q register

Z = Zero

The microword ALU function field, bits 27-29,
controls the functions that the ALU performs
on the R and S inputs, as follows:

MWFUNCTFLD 00-02

00-02 Function

R plus S

1 S minus R
2 R minus S
3 R or S
4 R and S
5 -R and S

6 R xor S
7 R xnor S

MWDESTFLD The microword ALU destination field, bits
30-32, determines if the Am2901 output (Y)

will be from the ALU or the RAM location
addressed by MWPORTAFLD 0-3. It also
determines the input to the Q register and to
the RAM location addressed by MWPORTBFLD 0-3.
This field also controls the RAM shifter and Q
shifter, causing the RAM and Q register inputs
to multiplied or divided by 2 (shifted left or
right). Thus, by controlling the Am2901
internal data paths, this field determines the
destinations of the Am2901 internal data. The
effect of this field is as follows:

Y Q
00-02 Gets Gets

ALU ALU
ALU HOLD
RAM A HOLD

RAM B
Gets

HOLD
HOLD
ALU

5-25

Table 5-4 ALU Control Commands (Cont)

Command

MWPORTAFLD 00-03

MWPORTBFLD 00-03

MWCARRY

MWOUTPUTENA

Description

ALU
ALU
ALU
ALU
ALU

HOLD
Q/2
HOLD
QX2
HOLD

ALU]
ALU/2
ALU/2
ALUX2
ALUX2

The microword port A select field, bits 35-38,

addresses one of 16 RAM locations that will be

read through the A latch. This port is

read-only.

The microword Port B select field, bits 39-42,

addresses one of 16 RAM locations that will be

either read through the B latch or written.

The microword 2901 carry in field, bit 51, is

the carry into the least significant bit of

the ALU. When MWCARRY is 0, zero is carried
into the ALU LSB. When MWCARRY is 1, one is

carried into the ALU LSB.

The microword output enable to 2901, bit 13,

enables the output of the ALU.

The port microprocessor monitors the ALU status by sensing the

following condition codes:

CCFEQLO Condition Code F = — indicates that the result of the

last ALU operation produced all zeros

CCMBSIGN Condition Code MBus Sign — indicates that the last ALU

operation set the sign bit (ALU MSB = MBus bit 00)

5.1.11 Constant Multiplexer
The constant multiplexer (CNST MUX) is a two-input by 20-bit

multiplexer that provides the data (D) inputs to the 10 LSBs and

10 MSBs of the Am2901s (see Figure 5-6). It passes either MBus

D00-D09 or MWMGCFLD 00-09 (microword magic number, bits 14-23) to

the MSBs, and either MBus D26-D35 or MWMGCFLD 00-09 to the LSBs.

This allows the microprocessor to load a constant number value

into the 10 most significant and 10 least significant bits of the

ALU. MBus D10-D25 are always loaded into the corresponding "^"

inputs

.

'D'

MWMGCFLD 00-09 are selected as input to CNST MUX 00-09 and 26-35

when the port microprocessor executes a microword with the

microword skip/condition (MWSKIPFLD) , bits 43-47, set to 24

(octal). This SKIP/COND field value causes the signal select

constant field (SELCNSTFLD) to be asserted.

5-26

MBUS D26-D35

MBUS D10-D25

MBUS D00-D09

MWMGCFLDOO-09

SELCNSTFLD

CNST26-35

CNST10-25

CNSTOO-09

Figure 5-6 Constant Multiplexer (Simplified)

5.2 CBUS/DATA MOVER (CMVR) INTERFACE MODULE
The CBus/data mover (CMVR) interface module consists primarily of
the following control logic and data paths.

1. The CMVR control logic decodes and executes the commands
specified by the microprocessor controller microword. The
port microprocessor accesses the CMVR module by executing
microprocessor commands. These commands are decoded
functions of the microword bus control (MWBUSCTLFLD)
field, bits 48-50 and the MWMGCFLD field of the CRAM
control word. The port microprocessor monitors the CMVR
control logic status by sensing condition codes.

2. A data path between the KLIO CBus and the packet buffer
port link interface (PLI) , including:

A data mover and formatter (MVR/FMTR) between the CBus
and the PLI. The mover and formatter maps PLI 8-bit bytes
into KLIO 36-bit words and KLIO 36-bit words into PLI
8-bit bytes.

CBus input and output buffers, CBus parity generators and
checkers, and CBus control logic.

PLI input and output buffers, PLI parity generators and
checkers, and PLI control logic.

3. A data path between the CMVR module and the port
microprocessor. This data path enables the microprocessor
to:

Load or read mover and formatter
Load or read the packet buffers via the PLI.

4. A parity predictor for checking parity through the mover
and formatter.

5-27

5.2.1 CMVR Control Logic
The CMVR control logic consists primarily of a decoder and a

series of two-input NAND gates. The decoder input is microword bus

control (MWBUSCTLFLD 00-02), bits 48-50. Table 5-5 lists the

decoder output signals as follows:

Table 5-5 Decoder Output Signals

MWBUSCTLFLD
0-2 Decoder Output

000
001
010
oil
100
101-111

nc (not connected)
SELPLIFLD (select PLI field)
SELMBUSFLD (select MBus field)
SELFMTRFLD (select mover and formatter field)

SELSCUSFLD (select CBus field)
nc (not connected)

These decoder output signals are then ANDed with various

combinations of microword magic number (MWMGCFLD 02-09), bits

16-23 to control the PLI, CBus, and MBus interfaces, and the mover

and formatter.

The CMVR control logic also generates and distributes the port

clocks (CLKl, CLK2, CLK3 and CLK4) to all three port modules. All

four clocks make up a single microcycle. The port clocks are

derived from the KLIO EBus clock. Figure 5-7 shows the

relationship of the clocks when the KLIO EBus clock is running at

the normal 160 ns cycle time.

CLKl normally strobes the next microword into the port CRAM

control register, and has several other timing functions,

depending on the specific operation. CLK2, CLK3, and CLK4 are

generally used throughout the port control logic to execute
microword-specif ied functions. CLK4 generates CPUCLOCK, which is

the clock input to the Am2901 ALU.

All four clocks are gated by control logic on the port

microprocessor control module. The gated clocks are named RUNCLKl,

RUNCLK2, RUNCLK3, and RUNCLK4, respectively. Gating these clocks

provides orderly control of port starting, stopping, and

single-cycle operation.

When the microword time field (MWTIMEFLD) , bit 56, is set in a

microword, CLK3 and CLK4 will occur 160 ns later than normal for

that microcycle, and the microcycle time will increase from 320 ns

to 480 ns. Increasing the execution time of the microcycle is a

simple way to overcome specific microinstruction timing problems.

5-28

f*— MICROCYCLE-

U 1 60ns 1^

EBUS
CLOCK

CLK1

CLK2

CLK3

CLK4

_F

"L
ADD 1 60ns HERE IF MWTIMEFLD IS SET — (SEE TEST)

Figure 5-7 Port Clock Timing

5.2.2 Data Mover and Formatter (MVR/FMTR)
The mover/formatter consists of four parallel/serial shift
registers and associated control logic. It is used as follows:

1. Parallel load and read by the port microprocessor as a
36-bit register.

2. Parallel load and read by the CBus interface as a 36-bit
register.

3. Parallel read by the PLI as an 8-bit register.

4. Serial load and left shift (shift up, from LSB to MSB) by
the PLI, four or eight bits at a time.

5. Serial load and right shift (shift down, from MSB to LSB)
by the PLI, four or eight bits at a time.

Four-bit nibbles from the PLI are loaded into the mover/formatter
and shifted either up (LSB to MSB) or down (MSB to LSB) , to form
36-bit KLIO words for parallel transfer to the CBus. Two shifts
load one 8-bit byte. One or two shifts can be executed in a single
port microprocessor microcycle.

The 36-bit KLIO words are loaded from the CBus into the
mover/formatter. After a word is loaded, the port microprocessor
can shift the word, up or down, into the PLI output register for
transfer to the PLI.

5-29

If the PLI output register is loaded from the bottom of the
mover/formatter and shifted up (LSB to MSB) the data is not
wrapped around, but is shifted out of the four MSBs of the
mover/formatter and lost. If the PLI output register is loaded
from the top and shifted down (MSB to LSB) the data can be wrapped
around. That is, the four LSBs of the mover/formatter are input to
the four MSBs of the mover/formatter. Therefore, data can be
right-shifted around the mover/formatter as necessary, to align
the data into the proper format. The port microprocessor can
select either the four MSBs or the four LSBs of the PLI byte as
the first input to the mover/formatter.

The commands to control the mover/formatter are described in Table
5-6.

Table 5-6 Mover/Formatter Control Commands

Command Description

MPCBUFTOFMTR C bufffer to formatter — causes the C buffer
contents to be loaded into the mover/formatter
registers.

MPFMTRTOPLOUT Formatter to PLI output buffer — causes the
8-bit data byte in the mover/formatter PLI
output register to be loaded into the PLI
output buffer.

MPZEROLFTNIB Zero left nibble — when asserted, causes the
four MSBs of the mover/formatter PLI output
register to be forced to zeros before they are
loaded into the PLI output buffer.

MPRHTNIBFIRST Right nibble first -- when asserted, the first
bits shifted into the mover/formatter are the
four PLI input buffer LSBs. When not asserted,
the first bits shifted into the
mover/formatter are the four PLI input buffer
MSBs.

MPSHFTFMTR8 Shift formatter by 8 bits — causes the
mover/formatter contents to be shifted eight
bits to the left or right, depending on the
state of MPSHIFTRIGHT.

MPSHFTFMTR4A Shift Formatter by 4 Bits — causes the
mover/formatter contents to be shifted four
bits to the left or right, depending on the
state of MPSHIFTRIGHT.

5-30

Table 5-6 Mover/Formatter Control Commands (Cont)

Command

MPSHFTFMTR4B

MPSHIFTRIGHT

MPPLINTOFMTR

Description

Shift Formatter by 4 Bits — causes the
mover/formatter contents to be shifted four
bits to the left or right, depending on the
state of MPSHIFTRIGHT.

Shift right — when asserted, either the
currently selected PLI input buffer nibble or
the four mover/formatter LSBs (MVROUT 36-39)
are shifted into the four mover/formatter MSBs
and shifted right.

The data shifted into the mover/formatter is
selected by MPPLINTOFMTR. If both MPSHIFTRIGHT
and MPPLINTOFMTR are asserted, the currently
selected PLI input buffer nibble is shifted
into the four mover/formatter MSBs and shifted
right.

If MPSHIFTRIGHT is asserted and MPPLINTOFMTR
is not asserted, then MVROUT 36-39 is shifted
into the four mover/formatter MSBs and shifted
right.

If MPSHIFTRIGHT is not asserted and if
MPPLINTOFMTR is asserted, the PLI input buffer
nibbles are shifted into the four
mover/formatter LSBs and shifted left.

PLI input buffer to formatter — causes the
8-bit data byte currently in the PLI input
buffer to be shifted (four bits at a time)
into the mover/formatter. This command is
executed in conjunction with MPSHFTFMTR4A or
MPSHFTFMTR8. If MPSHFTFMTR4A is executed, then
only four PLI input buffer bits are shifted
into the mover/formatter. If MPSHFTFMTR8 is
executed, then all eight PLI input buffer bits
will be shifted into the mover/formatter. Two
4-bit shifts can be executed during one
microcycle, right shifting an entire 8-bit
byte in a single microcycle.

5-31

Figure 5-8 shows the flow of data through the mover/formatter,
which is essentially four 12-bit shift registers. The data in and

out is from or to the PLI, CBus, or MBus.

For CBus and MBus data, the mover/formatter acts as a single

36-bit register, inputting and outputting CBus and MBus data in

36-bit parallel transfers.

PLI data is input to the mover/formatter, four bits at a time. It

is either loaded into the LSBs and shifted up, or into the MSBs

and shifted down. Data is output to the PLI, eight bits at a time,

from the two MSBs in each of the four registers.

The LSB of each of the four registers (36-39) can be wrapped

around and shifted into the MSBs and down, in order to align the

data.

PLI IN SHIFT

J~ ^
03 02 01 00
OR OR OR OR
07 1—ft 06 1—ft 05 —ft 04

OR OR OR OR
36

-»»>

37

-
38

-ft-

39

03 02 01 00 -ft-

07 06 * 05 04 -^

00 01 02 02 -»•

(-*• 04 -* -•• 05 -ft- *- 06 -ft- -•• 07

i -^ 08 -^ -*- 09 -ft" -ft" 10 -ft* *• 11 -ft-

FROM 1 -• 12 -»• -• 13 -* -^ 14 -• -ft> 15 -ft>

CBUS < -^ 16 -• * 17 -ft- -ft- 18 -ft. * 19

MBUS 1 -• 20 * -•» 21 -»• -•» 22 -^ -ft- 23 -ft>

/ -^ 24 -^ "> 25 • 26 -^ -» 27 -•

I j^ 28 -» -•» 29 -1^ -• 30 •* -•» 31 -ft-

* 32 -»' -» 33 • -• 34 -•> -ft- 35 -ft-

36 37 38 39

03 02 01 00
[—

»

OR OR 1
—ft OR 1

—

*^ OR
07 06 05 04

DOWN

^
TO
PLI

OUT

TO
CBUS
MBUS

1>
SHIFT
UP

Figure 5-8 Mover/Formatter Data Flow

The mover/formatter supports three different data formats (byte

packing modes)

:

1. Industry Compatible: Four 8-bit bytes per 36-bit word.

Bits 32-35 of the word are forced to zero (Figure 2-39)

.

2. Core Dump: Five 8-bit bytes per 36-bit word. Four bits of

every fifth byte are discarded.

5-32

3. High Density: Four and one-half 8-bit bytes per 36-bit
word (Figure 2-32)

.

These data formats are implemented by different
subroutines under control of the port microprocessor.

microcode

5.2.3 Data Input Multiplexer
The DMUX is a two-input by 36-bit multiplexer that passes a 36-bit
data word to the mover/formatter from either the CBus input buffer
or the CBUF. When MPCBUFTOFMTR is asserted, it selects the CBUF
input to DMUX; otherwise the CBus input buffer input is selected.
Figure 5-9 shows data flow through the DMUX.

CBINOO-35-

CBUFOO-35

MPCBUFTOFMTR'

1

SEL

MVRINOO-35

Figure 5-9 DMUX (Simplified)

5.2.4 PLI Serial Up Multiplexer (SUMUX)
The SUMUX is a two-input by 4-bit multiplexer that passes either
the four LSBs or the four MSBs of the PLI input buffer to the four
mover/formatter LSBs (see Figure 5-10) . The 4-bit nibbles can then
be left shifted to form a 36-bit word. Each mover/formatter left
shift discards the four MSBs,

Each microcycle can process two 4-bit nibbles, inputting an entire
B-bit PLI input buffer byte to the mover/formatter in one
microcycle.

MPPLINTOFMTR enables the SUMUX. MPRHTNIBFIRST selects the four PLI
input buffer LSBs as inputs.

The nibbles from the SUMUX are also an input to the SDMUX (see
Section 5.2.5)

.

PLIN4-7

PLINO-3

MPRHTNIBFIRST-

MPPUNTOFMTR -

PL40ROUP-70R3UP

Figure 5-10 SUMUX (Simplified)

5-33

5.2.5 PLI Serial Down Multiplexer (SDMUX)
The SDMUX is a two-input by 4-bit multiplexer that passes either

4-bit SUMUX output nibbles or the four mover/formatter LSBs
(MVROUT 36-39) to the four mover/formatter MSBs (see Figure 5-11) .

The nibbles can then be right shifted to form a 36-bit word. Each
microcycle can process two 4-bit nibbles, inputting an entire
8-bit PLI input buffer byte to mover/formatter in one microcycle.

The capability to shift the four mover/formatter LSBs (MVROUT
36-39) back into back into the four MSBs (PL4OR0DN-7OR3DN) permits
data to be wrapped around and shifted indefinitely with right
shift commands. Therefore, data can be retained and shifted (in

4-bit nibbles) to any position in the mover/formatter registers.

MPSHIFTRIGHT enables the SDMUX, and MPPLINTOFMTR selects the
output of SUMUX as input.

PL40ROUP-70R3UP-

MVR0UT39I-36 -

MPPLINTOFMTR

MPSHIFTRIGHT - -KD

PL40R0DN-70R3DN

Figure 5-11 SDMUX (Simplified)

5.2.6 PLI Output Multiplexer (PMUX)

The PMUX is a two-input by 8-bit multiplexer that passes either
the two MSBs from each of the four mover/formatter registers
(MVRPLOUTO-7) or the eight LSBs of the CBUF to the 8-bit PLI

output buffer (see Figure 5-12)

.

The port microprocessor command, MPCBUFTOPLOUT (CBUF to PLI output
buffer) selects CBUF28-35 as the input to the PMUX, passing MBus
D28-D35 (via CBUF) to the PLI output buffer. Otherwise,
MVRPLOUTO-7 are passed to the PLI output buffer.

If MPZEROLFTNIB is asserted, the four MSBs of the PMUX output
(PLOUT4-7) are forced to zeros, by disabling half of the PMUX.
This capability is needed for core dump byte-packing mode (see

Figure 5-11) , where the four MSBs of every fifth byte (BYTE 5n+5)
must be zero.

5-34

MVRPLOUT4-7

CBUF31-28

MPCBUFTOPLOUT

MPZEROLEFTNIB-

MVRPLOUTO-3

PL0UT4-7

CBUF35-32 »

GND-

1

SEL

EN

PLOUTO-3

Figure 5-12 PMUX (Simplified)

5.2.7 CMVR to Microprocessor Multiplexer (CMUX)
The CMUX is a two-input by 36-bit multiplexer that interfaces to
the port's internal MBus (see Figure 5-13). It enables the port
microprocessor to read

The mover/formatter as a 36-bit register, with an enable CMUX
(MPENACMUX) command.

The packet buffers (via the PLI input buffer) as 8-bit bytes. A
PLI input buffer to CMUX (MPPLINTOCMUX) command selects the PLI
input buffer (PLINO-7) as input to the eight CMUX LSBs. The 28
CMUX MSBs are forced to 0, by tying their inputs to ground.
MPENACMUX must also be asserted, to enable the multiplexer.

MVROUTOO-26-

GND

MPPLINTOCMUX-

MPENACMUX O

1

SEL

EN

MVROUT28-35-

MBUS D00-D27

PLIN7-0 1

SEL

EN

MBUS D28-35

Figure 5-13 CMUX (Simplified)

5.2.8 Microprocessor to CMVR Register (CBUF)
The CBUF is a 36-bit buffer/driver that passes data from the
microprocessor internal MBus to the CBus/data mover interface
module (CMVR) . The CBUF acts only as an isolation buffer to the
tristate MBus and is logically transparent to the
microprocessor.

port

5-35

5.2.9 CBus Input Buffer
The CBus input buffer is a latched 38-bit (36 data bits + 2 parity
bits) register that passes data from the CBus to the
mover/formatter. The register can be loaded from the CBus whenever
it is not being read by the mover/formatter. The reverse is also
true. That is, the register can be read by the mover/formatter if

it is not being loaded from the CBus.

The contents of the CBus input buffer are normally clocked into
the mover/formatter by a CBus input buffer to formatter
(MPCBINTOFMTR) command at CLK2 time, if condition code CBus
available (CCCBUSAVAIL) was asserted on the previous microcycle.

5.2.10 CBus In Parity Checker
The CBus In parity checker checks for odd parity on each 18-bit
half of the 36-bit word that the mover/formatter reads from the
CBus input buffer. If parity is not correct, condition code CBus
parity error (CCCBUSPARRERR) is generated and passed to the
microsequencer (Am2910) condition code multiplexer (CCMUX)

.

The condition code remains latched until cleared by the
microsequencer. When the port microprocessor senses CCCBUSPARERR
is set, it sets DATA PATH ERR (CSR26) in the control and status
register

.

5.2.11 CBus Output Buffer
The CBus output buffer is a latched 38-bit (36 data bits + 2

parity bits) register that passes data from the mover/formatter to
the CBus. The register can be loaded from the mover/formatter
whenever it is not being read by the CBus. The reverse is also
true. That is, the register can be read by the CBus if it is not
being loaded from the mover/formatter.

The CBus output buffer is normally loaded from the mover/formatter
by a formatter to CBus output buffer (MPFMTRTOCBOUT) command at
CLK2 time, if CCCBUSAVAIL was asserted on the previous microcycle.

5.2.12 CBus Out Parity Generator
The CBus Out parity generator generates odd parity for each 18-bit
half-word passed from the mover/formatter to the CBus output
buffer. The two parity bits for a complete 36-bit word are latched
into the buffer for output to the CBus.

5.2.13 CBus Control Logic
The CBus control logic arbitrates the CBus protocol and the port
protocol for starting and stopping the CBus, and performs
synchronization between the CBus and the mover/formatter. The CBus
control logic also generates the clock timing for the port.

The CBus is a synchronous, high-speed, time-division multiplexed,
tristate data bus. It runs between the KLIO MBOX and the channel
devices (see Figure 4-5 and Table 4-5) . Each device on the CBus
has a unique time slot. A CBus data transfer has four cycles:
select, request, wait, and data (see Figure 4-6 and Table 4-6).

5-36

The port microcode prepares to start the CBus data channel by
executing a start CBus (MPSTARTCBUS) command. For an input data
transfer to the KLIO memory, the port microcode also executes a
write to KLIO memory (MPWRITEMEM) command. The CBus control logic
latches these commands, until they can be executed when the port's
CBus time slot becomes available. The CBus control logic detects
the port's time slot by sensing its CBus SEL line.

When the CBus control logic detects the port's CBus SEL line
asserted and the CBus READY line negated, it starts the channel by
using the latched MPSTARTCBUS command to assert CBus START and
CBus RESET during the subsequent data cycle. The CBus control
logic then clears the appropriate latches set by previous port
microcode commands (such as MPSTARTCBUS) . If the transfer is to
KLIO memory, the CBus control logic also uses the MPWRITEMEM
command to assert CBus CTOM at this time. However, it does not
clear the latch set by the MPWRITEMEM command until the data
transfer is complete.

When the KLIO channel is ready to transfer data over the CBus, it
asserts CBus READY during the port data cycle.

After receiving CBus READY, the port CBus Control asserts CBus
REQUEST during its request cycle whenever it requires a data word
from the channel (device write) , or whenever it requires that the
channel accept a data word (device read) . The words are asserted
on the CBus DATA lines during the port data cycle following its
corresponding request cycle.

The port is ready to transfer data across the CBus whenever its
CBus input buffer is empty, or whenever its CBus output buffer is
full.

The CBus input buffer is emptied (transferred to the
mover/formatter) with the CBus input buffer to formatter
(MPCBINTOFMTR) command when the port microprocessor senses the
condition code CBus available (CCCBUSAVAIL) and is prepared to
accept data from the CBus.

The CBus output buffer is loaded (the contents of the
mover/formatter are transferred to it) with a formatter to CBus
output buffer (MPFMTRTOCBOUT) command when the port microprocessor
senses CCCBUSAVAIL and has data available for transfer to the
CBus.

When the channel places the last word on the CBus during a device
write operation, it asserts CBus LAST WORD. In response, the port
CBus control logic asserts condition code CBus last word
(CCCBLSTWD) . When the port microprocessor detects CCCBLSTWD, it
responds with a stop CBus (MPSTOPCBUS) command. This causes the
port CBus control logic to assert CBus DONE during the next port
data cycle. The port will make no more data requests during
subsequent request cycles. CBus DONE causes the channel to
terminate the operation. CBus READY is negated when the channel is
prepared to begin another data transfer.

5-37

The port microprocessor can also execute a store CBus status
information (MPSTORECBUS) command with an MPSTOPCBUS command on
the same microcycle. This causes the port CBus control logic to
assert CBus STORE along with CBus DONE on the next port data
cycle. Asserting CBus STORE and CBus DONE during the same data
cycle forces the channel to store channel status in the channel's
assigned reset and status logout area.

NOTE
MPSTORECBUS should never be asserted
unless MPSTOPCBUS is also asserted on the
same microcycle.

The port microprocessor executes both the MPSTOPCBUS command and
MPSTORECBUS command, causing the port CBus control logic to assert
CBus DONE and CBus STORE, when it has transferred all data over
the CBus during a device read operation. The port microprocessor
also executes these commands when it detects, during a read or
write, one of the following transfer error condition codes set:

CBus parity error (CCCBUSPARERR)
CMVR parity check (CCCMVRPARCHK)
CBus channel error (CCCHANERR)
PLI parity error (CCPLIPARERR)

.

The port will make no more data requests during subsequent request
cycles.

5.2.14 PLI Input Buffer
The PLI input buffer is a latched 9-bit (8 data bits + 1 parity
bit) register that passes data from the PLI bus to the
mover/formatter. The register is loaded with a receive PLI
MPRECVPLI command at CLK4 whenever an 8-bit byte is present for
input from the PLI bus. Every time the register is loaded, PLI bus
parity is loaded into a holding flip-flop.

Once the register is loaded, the port microprocessor transfers the
data (four bits at a time) to the mover/formatter (four bits at a
time) with the commands MPPLINTOFMTR, MPLFTNIBFIRST, MPSHIFTRIGHT,
and so on. The port microprocessor can also execute an
MPPLINTOCBUF command, transferring 8-bit data byte to the eight
MBus LSBs, for further transfer to one of the microprocessor's
internal storage media.

5.2.15 PLI Parity In Checker
The PLI Parity In checker checks for odd parity on every 8-bit
data byte that the port reads from the PLI input buffer. If parity
is incorrect, condition code PLI parity error (CCPLIPARERR) is
generated and passed to the microsequencer ' s condition code
multiplexer. The port microprocessor sets DATA PATH ERR (CSR26) in
the CSR when it senses CCPLIPARERR set. CCPLIPARERR stays latched
until cleared by the microprocessor.

5-38

5.2.16 PLI Output Buffer
The PLI output buffer is a latched 9-bit (8 data bits + 1 parity
bit) register that passes data from the mover/formatter to the PLI
bus. The port loads the register (via the PMUX) when it has an
8-bit byte assembled and ready for transfer to the PLI bus from
either the eight mover/formatter MSBs (PLI output byte) or the
eight MBus LSBs (via the CBUF) . The port microprocessor loads the
register with either a CBUF to PLI output buffer (MPCBUFTOPLOUT)
command at CLK4 time, or a formatter to PLI output buffer
(MPFMTRTOPLOUT) command at CLK2 time. When the register is loaded,
odd parity is generated and loaded into a holding flip-flop.

After the register is loaded, the port enables the tristate
register outputs with a transmit PLI (MPXMITPLI) command, placing
the data on the PLI bus.

5.2.17 PLI Parity Out Generator
The PLI parity out generator normally generates odd parity for
every 8-bit data byte passed from the port to the PLI output
buffer. The parity bit is latched into a holding flip-flop for
output to the PLI bus. The diagnostic command, test PLI parity
generator (MPTESTPLIPAR) , forces the PLI parity generator to
generate even parity.

5.2.18 PLI Control Logic
The PLI control logic arbitrates the PLI protocol and the port
microprocessor protocol for accessing the PLI, and performs
synchronization functions between the PLI and the CMVR module.
Figures 4-8 and 4-9 show the PLI signals, and Tables 4-7, 4-8,
4-9, and 4-10 describe the PLI signals.

5.2.19 Parity Predictor
Because the four mover/formatter registers may be serial or
parallel loaded and read, and shifted in several different ways,
correct parity cannot be simply propagated through the
mover/formatter. Therefore, a parity predictor is used. The parity
predictor enables the port microprocessor to verify data integrity
through the mover/formatter using combined hardware and microcode
functions to predict correct parity.

The parity predictor includes a J-K flip-flop, two 4-bit parity
checkers, and related control logic. The J-K flip-flop is toggled
every time a CBus or PLI parity bit is detected on a data transfer
in either direction. The output of the J-K flip-flop, condition
code mover parity check (CCMVRPARCHK) , is monitored by the
microprocessor.

The parity predictor is primarily controlled by several
microprocessor commands that simultaneously control other
functions, and therefore does not require much separate microcode.
However, the parity predictor does require two unique commands for
proper control:

5-39

1. Industry-Compatible Mode (MPINDSTCOMP) — sets the
parity predictor to operate correctly in

industry-compatible mode (see Figure 5-10) . It enables
the parity predictor to calculate correct parity for CBus
D32-D35, which do not pass through the mover/formatter in

industry-compatible mode. The calculated parity for
D32-D35 is then subtracted from the calculated parity for
the entire 36-bit CBus word.

This command is executed when transferring data from the
CBus to the PLI in industry-compatible mode.

2. Clear parity check (MPCLRPARCHK) — clears CCMVRPARCHK.

To detect an error, different microcode algorithms are used to

predict the state of CCMVRPARCHK that should correspond to the
number of parity bits detected at the CBus and PLI interfaces
during data transfers. If the state of CCMVRPARCHK is not correct
when it is checked by the microcode, then it is likely that an
error has occurred in the mover/formatter. When the port
microproccessor senses the incorrect state of CCMVRPARCHK, it sets
DATA PATH ERR (CSR26) in the CSR.

There are six microcode algorithms, each slightly different
according to data format mode (see Figures 5-9 through 5-11) and
direction of transfer. The algorithms check the following
conditions

:

1. HIGH DENSITY — CBus to PLI — CCMVRPARCHK is always
toggled an odd number of times for every two-word
(9-byte) transfer from the CBus to the PLI.

2. HIGH DENSITY — PLI to CBus — CCMVRPARCHK is always
toggled an odd number of times for every two-word
(9-byte) transfer from the PLI to the CBus.

3. INDUSTRY COMPATIBLE — CBus to PLI - CCMVRPARCHK is
always toggled an even number of times for every one-word
(4-byte) transfer from the CBus to the PLI. The port
microprocessor executes an MPINDSTCOMP command for every
transfer.

4. INDUSTRY COMPATIBLE — PLI to CBus — CCMVRPARCHK is

always toggled an even number of times for every one-word
transfer (4-byte) from the PLI to the CBus.

5. CORE DUMP — CBus to PLI — CCMVRPARCHK is always toggled
an even number of times for every two-word (10-byte)
transfer from the CBus to the PLI.

6. CORE DUMP — PLI to CBus — CCMVRPARCHK is always toggled
an even number of times for every two-word (10-byte)
transfer from the PLI to the CBus.

5-40

5.3 PORT MICROPROCESSOR
The port microprocessor comprises the following, all of which,
except the microprocessor ALU, are located on the microprocessor
control module.

The Ara2901-based microprocessor ALU (physically located on the
EBus interface/port ALU module, and described in Section 5.1.

The microprocessor controller, which includes

An Am2910 microsequencer and associated control, input,
and output functions

The 4K-word by 60-bit control RAM (CRAM) , including a
load and read/verify path to the MBus

The 60-bit CRAM control register, which latches the
currently executing microword.

The IK-word by 36-bit local RAM storage memory that
interfaces to the MBus and is read and written by the
microprocessor

Microprocessor control logic to control various port
microprocessor timing functions.

5.3.1 Condition Code Multiplexer
The condition code multiplexer (CCMUX) is a 16-ihput by 1-bit
multiplexer that enables one of 16 condition codes to alter the
microword execution sequence.

Using microword skip/condition (MWSKIPFLDOl-04) , bits 44-47, the
port microprocessor selects the CCMUX input to pass to the Am2910
TEST COND input. In the same microcycle, the port microprocessor
enables the test condition by asserting MWCCENA (described below)
on the Am2910 TEST EN input. The state of the selected condition
code affects the conditional microsequencer instructions — such
as certain jump, return, load instuctions. The result of these
instructions determines the address of the next microword to be
executed and the sequence of microprogram execution.

The source of the conditon codes is the CMVR module (00, 05-07,
and 13-17) , the microprocessor ALU (02 and 12) , or the EBus
control logic (01, 03-04, and 10-11). The 16 condition codes are
described in Table 5-7.

5-41

Table 5-7 Condition Code Definitions

Condition Code/
MWSKIPFLD 01-04 Definition

CCCBUSAVAIL
00

CCGRNTCSR
01

CCFEQO
02

CCCSRCHNG
03

CBus available — asserted when the CBus input
buffer is available to receive a word from the

CBus, or the CBus output buffer is available
to be loaded with a word for transfer to the
CBus, or the CBus is not currently active (no

data transfers occurring)

.

Grant CSR — enables port microprocessor
access to the control and status register.
Asserted by microprocessor request CSR
(MPRQSTCSR) if the KLIO does not have access
to the CSR.

ALU function =0 — indicates that the result
of the last ALU operation was all zeros.

CSR register changed — asserted when the KLIO

writes the CSR with a CONO, or an EBus parity
error is detected. Cleared when the port
microprocessor asserts read CSR (MPREADCSR)

.

The condition code notifies the port
microprocessor that the KLIO has changed the
contents of the CSR.

CCEBPARERR
04

CCRCVRBUFAFUL
06

CCRCVRBUFBFUL
06

CCXMTRATTN
07

CCEBUSRQST
10

EBus parity error — asserted
parity error is detected.

when an EBus

Receiver buffer A full — originates in the
PLI. Asserted when receive buffer A in the
packet buffer module is loaded with a CI
packet.

Receiver buffer B full — originates in the
PLI. Asserted when receive buffer B in the
packet buffer module is loaded with a CI
packet.

Transmitter attention — originates in the

PLI. Asserted when the transmit buffer in the
packet buffer module requires attention.

EBus request — asserted by an EBus DATAO or
DATAI when the port is in the MPROC RUN state
(CSR32 set)

.

5-42

Table 5-7 Condition Code Definitions (Cont)

Condition Code/
MWSKIPFLD 01-04

CCINTRACTIVE
11

CCMBSIGN
12

CCMVRPARCHK
13

CCCBUSPARERR
14

CCPLIPARERR
15

CCCHANERR
16

CCCBLSTWD
17

Definition

Interrupt active — Indicates that the PI
level 01 through 07 interrupt request,
previously executed by the port micro-
processor, is waiting for KLIO processing.

ALU sign bit set — indicates that the last
ALU operation set the sign bit (MSB or bit
00) .

r

Mover parity check — toggled when a parity
bit = 1 is sensed from either the CBus or the
PLI, during DMA data transfers between them.
By comparing the value (1 or 0) of this
condition code with a predicted value, the
microprocessor determines if a parity error
occurred during a data transfer through the
mover/formatter.

CBus parity error — asserted when a parity
error is detected in a word read from the
CBus. The condition code is latched until it
is cleared by a command from the
microprocessor controller.

PLI parity error — asserted when a parity
error is detected in a word read from the PLI.
The condition code is latched until it is
cleared by a command from the microprocessor
controller.

CBus channel error — asserted when the CBus
ERROR signal is asserted on the CBus. The
condition code is latched until it is cleared
by a command from the microprocessor
controller.

CBus last word — asserted when the CBus LAST
WORD signal is asserted on the CBus. The
condition code is latched until it is cleared
by a command from the microprocessor
controller

.

The field microword condition code enable (MWCCENA) , bit 33,
controls the way the microsequencer tests the condition codes. If
MWCCENA is not asserted, then the condition is always met. For
example, a conditional jump instruction will always branch rather
than execute the next sequential microword, thus behaving like an

5-43

unconditional jump. If MWCCENA is asserted, the condition is met

only if the condition code selected through the CCMUX by

MWSKIPFLDOl-04 is also asserted. For example, a conditional jump

instruction will branch if the selected condition code is

asserted. If the selected condition code is not asserted, then the

next sequential microword is executed.

5.3.2 Microsequencer
The microsequencer is an Am2910 microprocessor sequence controller
(see Figure 5-14) . It selects the address of the next microword to

be executed. The Am2910 is configured such that:

The outputs (NXTADDRll-00) are always enabled, by tying OUT EN

to ground.

The microprogram counter (mPC) is always incremented on the

next clock by tying CIN to the incrementer (+1) to +3 V.

The REGISTER/COUNTER force load feature is disabled by tying

LOAD REG/CTR to +3 V.

The PL, MAP, and VECT outputs are not connected to enable
other external sources for the DIRECT INPUTS.

NXTADDROO-11

CCMUX-

CCENA

RUNCLK4

INSTRUCTION
LOGIC

STACK
» POINTER

MWJMPFLDOO-03

JMPADDR04-11

(D11-D0)

;itPC

nil

(Y11-Y0)
/\

CEK

5-WORD
STACK

REGISTER/
#J COUNTER

jT

\/aPCX

MUX

R

:^
Figure 5-14 Am2910 Block Diagram (Simplified)

5-44

The microsequencer is controlled by 16 instructions. The
instruction operation code is encoded in microword 2910 control,
(MWCTRLFLDOO-03) bits 52-55) , the 10-13 inputs to the
microsequencer. The instructions are described in Table 5-8.

Table 5-8 Microsequencer Instructions

Opcode/
Microcode
Mnemonic Description

JMPZ Jump to address zero — not used.

1 CJSR Conditional jump to subroutine — if both MWCCENA
and the condition code selected by the MWSKIPFLD
are asserted, transfer the address on the D-inputs
to the Y-outputs, and push the contents of the ^ PC
(that is, Y+1) on the stack. Otherwise, transfer
the contents of mPC to the Y-outputs.

2 JMAP Jump using MAP output — not used.

3 CJMP Conditional jump — if both MWCCENA and the
condition code selected by the MWSKIPFLD are
asserted, transfer the address on the D-inputs to
the Y-outputs; otherwise, transfer the contents of
the mPC to the Y-outputs.

4 PUSH Push and conditionally load counter — push the
contents of the M PC on the stack. If both MWCCENA
and the condition code selected by the MWSKIPFLD
are asserted, load the register/counter with the
value on the D-inputs.

5 CJSR.RP CJSR using pipeline or counter — not used.

6 CONVEC Conditional vector jump — not used.

7 CJ.RP CJMP to counter or pipeline address — if both
MWCCENA and the condition code selected by the
MWSKIPFLD are asserted, transfer the address on the
D-inputs to the Y-outputs; otherwise, transfer the
address held in the register/counter to the
Y-outputs.

10 LOOP.ON.CNT Repeat loop if counter not zero — if the contents
of the register/counter are not zero, decrement the
register/counter and transfer the address from the
top of the stack to the Y-outputs. Decrement the
stack pointer (POP); Otherwise, transfer the
contents of mPC to the Y-outputs.

5-45

Table 5-8 Microsequencer Instructions (Cont)

Opcode/
Microcode
Mnemonic Description

11 REPEAT

12 CONRET

13 CJ.PL

14 LOADCNT

15 TEST. LOOP

16 CONT

Repeat instruction if counter not zero — if the

contents of the register/counter are not zero,

decrement the register/counter and transfer the

address from the D-inputs to the Y-outputs.
Otherwise, transfer the contents of M PC to the
Y-outputs

.

Conditional subroutine return — if both MWCCENA
and the condition code selected by the MWSKIPFLD
are asserted, transfer the address from the top of
the stack to the Y-outputs and decrement the stack
pointer; otherwise, transfer the contents of ~PC to

the Y-outputs.

CJMP using pipeline and POP — if both MWCCENA and

the condition code selected by the MWSKIPFLD are
asserted, transfer the address on the D-inputs to

the Y-outputs and decrement the stack pointers-

otherwise, transfer the contents of the ~PC to the
Y-outputs.

Load counter — load the value/address on the
D-inputs into the register/counter.

Test end-of-loop condition — not used.

Continue normally — not used.

17 3WAYBRANCH Three-way branch — not used.

The first microword that the port microprocessor excutes on

initial startup (the KLIO set MPROC RUN, CSR32) is an

unconditional jump (that is, a CJMP with MWCCENA not asserted).
This guarantees that the Am2910 register/counter is correctly
loaded on the first executed instruction.

5.3.3 RAM Address Register
The RAR is a 13-bit register that addresses the next CRAM location
to write or read. The RAR is loaded from MBus D01-D13 when the
KLIO executes a DATOLOADRAR (DATAO with EBus DOO =1). It is used
to load and read/verify the contents of the CRAM when the port is

not running (CSR32 reset) . The RAR also holds the starting CRAM
address. When the port microprocessor is initially started (CSR32
set) , the first CRAM location is always addressed by the RAR
rather than by the microsequencer.

5-46

The 60-bit CRAM word is written and read/verified over the 36-bit
MBus. Therefore, it is written and read in two 30-bit half-words,
selected by the RAR LSB as follows:

RAR12 = Select the right CRAM bank (least significant
half-word, CRAM30-59)

.

RAR12 = 1 Select the left CRAM bank (most significant half-word,
CRAMOO-29).

Because the register is not also an up/down counter, it is loaded
every time the KLIO wants to address a CRAM location. In order to
write or read a CRAM location, the KLIO must execute four
commands: a DATOLOADRAR to address the first CRAM half-word,
followed by either a DATOLOADMW or PATIREADMW to write or read the
CRAM half-word; and then another DATOLOADRAR and a DATOLOADMW or
DATIREADMW to write or read the other half-word.

When the port is being operated in single-cycle mode (CSR22 set)

,

the KLIO loads the next address to be executed into the RAR at the
end of each single cycle. The next address is contained in the
latch address register (LAR) , (see section 5.3.4).

The KLIO can load only the RAR. It can read only the contents of
the RAR through the LAR.

5.3.4 Latch Address Register
The LAR is a 13-bit register that latches the CRAM address on
every microcycle. It is a diagnostic tool. The KLIO reads the LAR
by setting DIAG SEL LAR (CSR21) with a CONOLOADCSR, and executing
a DATAI when the port is not running (CSR32 reset)

.

If the port microprocessor halts while in the MPROC RUN state
(CSR32 set) , the LAR contains the address of either the last CRAM
location executed or the next CRAM location to be executed. The
LAR contents are determined by the state of DIAG SINGLE CYCLE
(CSR22) as follows:

If the port is not running in the single-cycle state (DIAG
SINGLE CYCLE, CSR22 is not set) and the port microprocessor
halts for any reason, the LAR contains the address of the last
microword executed.

If the port is running in the single-cycle state (DIAG SINGLE
CYCLE, CSR22 set), it automatically halts at the completion of
each microcycle. The LAR contains the address of the next
microword to be executed. The KLIO executes a DATIREADLAR to
get the address, a DATOLOADRAR to load the address back into
the RAR, and a CONOLOADCSR to set MPROC RUN (CSR32) and enable
the port microprocessor to execute the next single-cycle when
it is restarted.

5-47

Reading the LAR destroys the current E buffer data. Therefore, to

preserve valid E buffer data, the KLIO must read the E buffer
(execute a TESTREADEBUF DATAI) before it reads the LAR. After it

reads the LAR, the KLIO must execute a TESTLOADEBUF DATAO to

restore the preserved data to the E buffer. The 12 LAR MSBs are
loaded by CRAMADDROO-11 from the ADDR MUX (see Section 5.3.5). The
LSB is loaded from RAR12. The LAR is loaded at CLKl time of every
microcycle when the port is not in the single-cycle state, or CLK
4 time of every microcycle when the port is in the single-cycle
state. The LAR output is MBus DOl-13. I^Bus D14-35 are undefined
during an LAR read.

5.3.5 Address Multiplexer
The address multiplexer (ADDR MUX) is a two-input by 12-bit
multiplexer that passes either the Am2910 microsequencer Y-outputs
(NXTADDROO-11) or RAROO-11 to the CRAM address inputs (see Figure
5-15)

.

In the MPROC RUN state (CSR32 set) the next address is normally
fetched from the Am2910 Y-outputs. But, when CSR32 is initially
set, the address of the first CRAM location to be executed is

always fetched from the RAR.

When the port is not running (CSR32 reset) the CRAM address is

always fetched from RAR.

NXTADDROO-1 1

RAROO-11-

SELRARADR-

GND *o

CRAMADDROO-11

Figure 5-15 Address Multiplexer (Simplified)

Note that RAR12 is not passed through the multiplexer, but goes
directly to the microprocessor control logic to select the CRAM
half-word.

5.3.6 Control RAM
The CRAM is a 4K-word by 60-bit RAM with tristate input/output and

55 ns access time. It stores the port microprocessor microcode.

The CRAM is initially loaded and undergoes read/verify, one
half-word at a time, from the 30 MBus LSBs (MBus D06-D35) when the
port is not running (MPROC RUN, CSR32 not set) . To load one CRAM
location, four EBus transfers are needed, in the following
sequence

:

5-48

1. DATOLOADRAR — load the RAR with the address of the
right bank CRAM location. The KLIO executes a DATAO with
EBus DOO = 1, D01-D12 = address, D13 = (least
significant, or right half) . EBus bits D14-D35 are
undefined.

2. DATOLOADMW — load data into the right half of the CRAM
location. The KLIO executes a DATAO with EBus DOO = 0,
and D06-D36 = data. EBus bits D00-D05 are undefined.

3. DATOLOADRAR - load the RAR with the address of the left
bank CRAM location. The KLIO executes a DATAO with EBus
DOO = 1, D01-D12 = address, D13 = 1 (most significant, or
left half). EBus bits D14-D35 are undefined.

4. DATOLOADMW - load data into the left half of the CRAM
location. The KLIO executes a DATAO with EBus DOO = 0,
and D06-D36 = data. EBus bits D00-D05 are undefined.

When the port microprocessor is running (MPROC RUN, CSR32 set) ,

the CRAM location currently addressed by the microsequencer is
normally strobed into the CRAM register (see Section 5.3.9) by
RUNCLKl of every microcycle, for execution. However, when DIAG
SINGLE CYCLE (CSR22) is set or during initial microprocessor
startup, the address of the first CRAM location is always taken
from the RAR instead of the Am2910.

If either a CRAM parity error or an MBUS error occurs while the
microprocessor is running, CRAM data may be invalid. The entire
CRAM should be reloaded before the port microprocessor is
restarted.

5.3.7 CRAM Load Buffers
The two CRAM load buffers, left CRAM load buff and right CRAM load
buff, are used to load the CRAM when the port is not running
(CSR32 reset) . Each is a 30-bit tristate buffer that inputs EBus
data, via the MBus, to the CRAM I/O pins (see Figure 5-16).

The CRAM is loaded when the KLIO executes a DATAOLOADMW (a DATAO
with EBus DOO = and the state of EBus D01-D05 is undefined) .

This DATAO also causes EMUX EN, CRAM WREN, and (with RAR12) the
load buffer enables to be asserted. The complete CRAM load
sequence is described in Section 5.3.6.

The CRAM load buffers are pass-through buffers and do not latch
the data. The left CRAM load buff passes MBus D06-D35 to CRAM bits
00-29, and the right CRAM load buff passes MBus D06-D35 to CRAM
bits 30-59. The buffers are enabled only when the port is not
running (CSR32 reset)

.

5-49

EBUS D00-D35

GND/CSR04-35

MPREADCSR

DATAOLOADMW

RAP12

Figure 5-16 CRAM Load Buffers (Simplified)

5.3.8 CRAM Parity Checker
The CRAM parity checker checks for odd parity on the 59 MSBs of
the 60-bit microword in the CRAM register. The LSB, MWMARKBIT bit
59, is not included in the parity check. If parity is incorrect
(even) , CRAM PARITY ERR (CSR06) and RQST INTERRUPT (CSR05) are set
in the CSR, and the port microprocessor is halted. A nonvectored
(40 + 2n) interrupt request will be generated over the EBus.

Microword parity is calculated and the state of MWPAR (bit 12) is

set by the microcode assembler to give the microword odd parity,

CRAM PARITY ERR (CSR06) can be force-set in order to halt the port
microprocessor at a specific location (breakpoint) . It is then
cleared by the KLIO executing a CONO with EBus D24 = 1 (EBUS
PARITY ERR, CSR24) . The port microprocessor is restarted by
setting MPROC RUN (CSR32)

.

5.3.9 CRAM Register
The CRAM register is a 60-bit register that holds the currently
executing microword. It is loaded from the currently addressed
CRAM location by RUNCLKl of every microcycle. Then RUNCLK2,
RUNCLK3, and RUNCLK4 clock the execution of the operations
specified by the microword fields.

RUNCLKl, RUNCLK2, RUNCLK3, and RUNCLK4 are gated outputs of CLKl

,

CLK2, CLK3, and CLK4 respectively. They are active only when the
microprocessor is in the MPROC RUN state (CSR32 set)

.

5-50

5.3.10 Microword Field Definitions
The definitions of the microword fields are described in Table
5-9.

Table 5-9 Microword Field Definitions

Field/
Bits Definition

MWJMPFLD CRAM 00-11, jump field — one source for all or part
00-11 of the next CRAM location address. MWJMPFLD bits

00-03 are input to Am2910 D11-D8. MWJMPFLD bits 04-11
or MBus D16-D23 are input to Am2910 D7-D0 via the JMP
MUX.

MWPAR CRAM 12, parity bit) — microword parity bit. Its
state is calculated and set by the microcode
assembler to give the word odd parity. Even microword
parity will generate CRAMPE (CRAM parity error)

.

MWOUTPUTENA CRAM 13, ALU data output enable — controls the
Am2901 OUT EN. When asserted, this bit enables the
Am2901 tristate Y-outputs to be asserted on the MBus.

MWMGCFLD CRAM 14-23, magic number field — provides constants
00-09 for the Am2901 internal RAM, provides local RAM

storage memory addresses, and with other microword
fields, controls the EBus and CMVR interfaces (see
MWBUSCTLFLD, MWSKIPFLD, and MWRAMODE)

.

MWSORCEFLD CRAM 24-26, ALU source field 12-10 — selects the
00^02 source of the R and S inputs to the Am2901 ALU, as

follows:

MWSORCEFLD
00-02 R S

A Q
A B

Z Q
Z B
Z A
D A
D Q
D Z

Where:

A = The contents of the Am2901 internal RAM location
addressed by MWPORTAFLD 00-03

B = The contents of the Am2901 internal RAM location
addressed by MWPORTBFLD 00-03

5-51

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits

MWFUNCTFLD
00-02

Definition

D = The data on CNST 00-09, MBus 10-25, and CONST
26-35

Q = The contents of the Am2901 internal Q register
Z = Zero.

CRAM 27-29, ALU function 15-13 — controls the
functions that the Am2901 ALU performs on the R and S
inputs.

MWFUNCTFLD
00-02

1

2

3

4

5

6

7

Function

R plus S

S minus R
R minus S

R or S
R and S
R and S
R xor S

R xnor S

MWDESTFLD CRAM 30-32, ALU destination 18-16 — determines if
00-02 the Am2901 output (Y) will be from the ALU or the

internal RAM location addressed by MWPORTAFLD 0-3.
Also determines the input to the internal Q register
and to the internal RAM location addressed by
MWPORTBFLD 0-3.

This field also controls the internal RAM shifter and
Q shifter, causing the RAM and Q register inputs to
multiplied or divided by 2 (shifted left or right).
Therefore, by controlling the Am2901 internal data
paths, this field determines the destinations of the
Am2901 internal data. The effect of this field is as
follows:

MWDESTFLD Y Q RAM B
00-02 Gets Gets Gets

ALU ALU HOLD
1 ALU HOLD HOLD
2 RAM A HOLD ALU
3 ALU HOLD ALU
4 ALU Q/2 ALU/2
5 ALU HOLD ALU/2
6 ALU QX2 ALUX2
7 ALU HOLD ALUX2

5-52

Field/
Bits

Table 5-9 Microword Field Definitions (Cont)

Definition

MWCCENA

MWRAMODE

MWPORTAFLD
00-03

MWPORTBFLD
00-03

CRAM 33, condition code enable bit — the Am2910
microsequencer condition code enable bit: MWCCENA not
asserted = conditional test always passed; MWCCENA
asserted = conditional test passed only if CCMUX
input is asserted.

CRAM 34, local storage RAM mode bit — selects either
local or global addressing to address the local
storage RAM: MWRAMODE not asserted = global
addressing; MWMGCFLD 00-09 contains the entire
address of a location in the local storage RAM.

MWRAMODE asserted = local addressing. MWMGCFLD 05-09
contains the five address LSBs, and SADREG 00-04
contains the five address MSBs of a location in the
local storage RAM.

CRAM 35-38, port A address field A3-A0 — the Am2901
internal RAM port A address field, which addresses
one of 16 RAM locations that will be read through the
A latch. This port is read-only.

CRAM 39-42, port B address field B3-B0 — The Am2901
internal RAM Port B address field. This field
addresses one of 16 RAM locations that will be either
read through the B latch or written. The Port A and B
locations are:

A/B
00-03 Name

00 TO
01 Tl
02 T2
03 T3
04 T4
05 LNGTH
06 CMD
07 FLAG/

FLAGS
10 REG
11 INTLK

12 FLINK
13 BLINK
14 OFFSET

15 SPARE

Description

Temporary register
Temporary register 1

Temporary register 2

Temporary register 3

Temporary register 4

The length of something
Command or message to process
Latest state flags (global
flag word)

Address of interlock word for
the command queue being
processed
Forward link of a queue
Backward link of a queue
Base local storage address of
command queue being processed

5-53

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits Definition

16 R.MASK Mask to isolate right half of
word

17 L.MASK Mask to isolate left half of
word

MWSKIPFLD CRAM 43-47, skip field — this field is decoded by
00-04 the microprocessor COND/SKIP decoder and the

condition code multiplexer (CCMUX)

.

The CCMUX decodes only MWSKIPFLDOl-04 , and ignores
MWSKIPFLDOO, The decoded function selects one of 16
condition code inputs to the CCMUX, for input to the
Am2910, as follows:

MWSKIPFLD CCMUX
01-04 INPUT

00 CCCBUSAVAIL
01 CCGRNTCSR
02 CCFEQO
03 CCCSRCHNG
04 CCEBPARERR
05 CCRCVRBUFAFUL
06 CCRCVRBUFBFUL
07 CCXMTRATTN
10 CCEBUSRQST
11 CCINTRACTIVE
12 CCMBSIGN
13 CCMVRPARCHK
14 CCCBUSPARERR
15 CCPLIPARERR
16 CCCHANERR
17 CCCBLSTWD

The COND/SKIP decoder decodes only MWSKIPFLDOO,
02-04, and ignores MWSKIPFLDOl. The decode functions
are:

MWSKIPFLD
00, 02-04 Function

20 LOADSADREG — causes the local storage
address register to be loaded with the
contents of MWMGCFLD05-09

21 SELMBUSFLD — selects MBus D16-D23
through the jump multiplexer as input to
Am2910 D7-D0 (MWJMPFLDOO-03 are input to
Am2910 D11-D8)

5-54

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits Definition

22 RDLOCALMEM — causes the contents of the
currently addressed local storage RAM
location to be placed on the MBus

23 LDLOCALMEM — causes the currently
addressed local storage RAM location to
be loaded from the MBus

24 SELCNSTFLD — selects MWMGCFLDOO-09
through the constant multiplexer as the
10 least significant and the 10 most
significant D inputs to the Am2901 ALU.

MWBUSCTLFLD CRAM 48-50, bus control field — with the MWMGCFLD
00-02 field, controls the various functions of the EBus and

the CMVR interfaces. The field is decoded as follows:

MWBUSCTLFLD
00-02 Function

No function
1 Select PLI

MWMGCFLD

00-01 No function

02-05 PLI LINK CONTROL 0-3 — passes
PLI LINK CONTROL 0-3 to the PLI
bus

06 MPSELECTPLI (select PLI)
asserts the PLI SELECT line

07 MPXMITPLI (transmit PLI)
enables the PLI output buffer
tristate outputs to the PLI bus

08 MPRECVPLI (receive PLI)
loads the contents of the PLI
Bus into the PLI input buffer

09 MPTESTPLIPAR (test PLI parity)
causes the PLI PAR OUT

generator to generate even
(bad) parity

2 Select MBus

5-55

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits Definition

MWMGCFLD

00-01

02

03

04

05

06

No function

MPENACMUX — enable CMUX.
Enables the CMUX tri-state
outputs to the MBus

MPPLINTOCMUX — PLI into CMUX.
Enables the PLI input path to

the CMUX, allowing the PLI
input buffer to be asserted on
the 8 MBus LSBs

MPCBUFTOPLOUT — CBUF to PLI
output buffer. Loads the 8 C
buffer LSBs into the PLI output
buffer

MPCLRCCCODE — clear condition
code. Causes all of the
condition code status bits
(except CCMVRPARCHK) on the
CMVR module to be cleared

MPCLRPARCHK — clear parity
check. Causes the condition
code CCMVRPARCHK to be cleared

07-09 No function

Select FMTR

MWMGCFLD

00-01

02

03

No function

MPSHFTFMTR8 — shift formatter
8 bits. Causes the contents of
the mover/formatter to be
shifted eight bits to the left
or right, depending on the
state of the command
MPSHIFTRIGHT

MPSHFTFMTR4A — shift formatter
4 bits. Causes the contents of
the mover/formatter to be
shifted four bits to the left
or right, depending on the
state of the command
MPSHIFTRIGHT

5-56

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits Definition

04 MPCBUFTOFMTR — CBUF to
formatter. Causes data
previously stored in the C
buffer to be loaded into the
mover/formatter register

05 MPPLINTOFMTR — PLI input
buffer to formatter. Causes the
8-bit data byte currently
stored in the PLI input buffer
to be shifted (four bits at a
time) into the mover/formatter
serial input lines. This
command is executed with
MPSHFTFMTR4A or MPSHFTFMTR8 . If
executed with MPSHFTFMTR4A,
then only four PLI input buffer
bits are shifted into the
mover/formatter. If executed
with MPSHFTFMTR8, all 8 PLI
input buffer bits are shifted
in. The state of the
MPRHTNIBFIRST command
determines if the four LSBs or
MSBs are shifted in first. If
MPSHIFTRIGHT is asserted, the
4-bit nibbles are shifted into
the four mover/formatter MSBs
and shifted right. Otherwise,
they are shifted into the four
mover/formatter LSBs and
shifted left

06 MPFMTRTOPLOUT — formatter to
PLI output buffer. Causes the
8-bit data byte currently
stored in the mover/formatter
PLI output register to be
loaded into the PLI output
buffer

07 MPSHIFTRIGHT — shift right.
When asserted, either the
currently selected PLI input
buffer nibble or the four
mover/formatter LSBs
(MVROUT36-39) are shifted into
the four mover/formatter MSB
serial input lines and shifted
right. If MPPLINTOFMTR is
asserted, then the currently

5-57

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits Definition

selected PLI input buffer
nibble is shifted into
mover/formatter MSBs and
shifted right. If MPPLINTOFMTR
is not asserted, then
MVROUT36-39 are shifted into
the mover/formatter MSBS and
shifted right. Two 4-bit shifts
can be executed in one
microcycle, right-shifting an
8-bit byte in one microcycle

08 MPRHTNIBFIRST — right nibble
first. When asserted, the four
PLI input buffer LSBs are
shifted into the
mover/formatter serial input
lines first. When not asserted,
the four PLI input buffer MSBs
are shifted into the
mover/formatter serial input
lines first

09 MPZEROLFTNIB — zero left
nibble. When asserted, causes
the four mover/formatter PLI
output register MSBs to be
forced to zero before they are
loaded into the PLI output
buffer

Select CBus

MWMGCFLD

00-01 No function

02 MPSTARTCBUS — start CBus.
Causes CBus START and CBus
RESET to be asserted on the
CBus at the proper time during
the next CBus SELECT cycle

03 MPSTOPCBUS — stop CBus. Causes
CBus DONE to be asserted on the
CBus at the proper time during
the next CBus SELECT cycle

04 MPSTORECBUS — store CBus.
Causes CBus STORE to be
asserted on the CBus at the

5-58

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits Definition

proper time during the next
CBus SELECT cycle. This command
is executed at the same time as
MPSTOPCBUS

05 MPWRITEMEM — write memory.
Causes CBus CTOM to be
asserted on the CBus at the
proper time during the next
CBus SELECT cycle. This command
is executed at the same time as
MPSTARTCBUS for a data transfer
to KLIO memory

06 MPINDSTCOMP — industry
compatible. Enables the parity
predictor to predict correct
parity in industry-compatible
mode. This command is executed
in industry-compatible mode
when transferring data from the
CBus to the PLI interface.

07 MPCBINTOFMTR — CBus input
buffer to formatter. Causes the
contents of the CBus input
buffer to be loaded into the
mover/ formatter

08 MPFMTRTOCBOUT — formatter to
CBus output buffer. Causes the
contents of the mover/formatter
to be loaded into the CBus
output buffer

09 MPSHFTFMTR4B — causes the
contents of the mover/formatter
to be shifted four bits to the
left

Select EBus

MWMGCFLD

00-01 No function

02 MPLOADCSR — load CSR. Loads
EBUF00-EBUF17 into CSR00-CSR17

03 MPREADCSR — read CSR. Places
CSR00-CSR35 on the MBus

5-59

Table 5-9 Microword Field Definitions (Cont

Field/
Bits Definition

04 MPRQSTCSR — request CSR.
Requests access to the CSR.
Access is granted to the port
microprocessor if the KLIO is

not currently accessing the
CSR.

05 MPLOADEBUS — load EBus. Causes
the contents of the E buffer to
be asserted on the EBus

06 MPREADEBUS —
• read EBus. Causes

the contents of the EBus to be
asserted on the MBus

07 MPLOADEBUF — load EBUF. Causes
port microprocessor data on the
MBus to be loaded into the E

buffer

08 MPRQSTINTR — request
interrupt. Causes the port to
request an EBus PI level 01-07
interrupt (function 00-03). The
interrupt function is

determined by an TOP function

control word, previously built
and loaded into the E buffer by
the port microprocessor. The
microprocessor passes the lOP
word to the EBus by asserting
condition code EBus request
(CCEBUSRQST)

09 MPEXORDEP — examine or
deposit. Causes the port to
request an EBus examine or

deposit PI Level 00 interrupt
(function 04-07). The
interrupt function is

determined by an lOP function
control word, previously built
and loaded into the E buffer by
the port microprocessor. The
microprocessor passes the lOP
word to the EBus by asserting
Condition Code EBus Request
(CCEBUSRQST)

5-60

Table 5-9 Microword Field Definitions (Cont)

Field/
Bits

MWCARRY

MWCTRLFLD
00-03

MWTIMEFLD

MWSPAREOO

MWSPAREOl

MWMARKBIT

Definition

6 No function

7 No function

CRAM 51, carry input to Am2901 ALU — this bit is the
carry into the least significant bit of the ALU. When
MWCARRY is 0, a zero is carried into the ALU LSB.
When MWCARRY is 1, a one is carried into the ALU LSB.

CRAM 52-55, microsequencer control input field
10-13 — the instruction input field to the Am2910.
Its functions are:

MWCTRLFLD
00-03

1

2

3

4

5

6

7

10
11
12
13
14
15
16
17

Instruction
Mnemonic

JMPZ
CJSR
JMAP
CJMP
PUSH
CJSR.RP
CONVEC
CJ.RP
LOOP.ON.CNT
REPEAT
CONRET
CJ.PL
LOADCNT
TEST. LOOP
CONT
3WAYBRANCH

CRAM 56, time field — when this bit is asserted, the
current microinstruction execution time (microcycle)
is extended from 320 ns to 480 ns.

CRAM 57, spare bit 00 — no function

CRAM 58, spare bit 01 — no function

CRAM 59, mark bit — has no microcode function. It is

used only for hardware/microcode debug. The bit can
be set in any microword, as an oscilloscope sync
point. The bit is neither part of the microword
parity calculation nor included in the CRAM parity
check. Therefore, it can be set and cleared with no
effect on the remainder of the microword content.

5-61

5.3.11 Microword Output Multiplexer
The microword output multiplexer (MW OUT MUX) is a two-input by

^0-bit multiplexer (see Figure 5-17). It passes either the right

or left half-microword (from the CRAM location currently addressed

by the RAR) to MBus D06-D35. The six MBus MSBs are undefined. The

multiplexer is enabled by READCRAM, which is asserted only by a

DATIREADMW command from the KLIO.

CRAMOO-29-

CRAM30-59-

SELRHTCRAM-

READCRAM— *o

1

SEL

EN .

-MBUS D06-D35

Figure 5-17 Microword Output Multiplexer (Simplified)

SELRHTCRAM (generated by RAR12) selects the half-microword input

to the multiplexer as follows:

RAR12 = Select the right CRAM bank (least significant

half-word, CRAM30-59)

RAR12 = 1 Select the left CRAM bank (most significant half-word,

CRAMOO-29)

.

5.3.12 Jump Multiplexer
The jump multiplexer (JMP MUX) is a two-input ^y ^-bit multiplexer

that passes either MWJMPFLD04-11 (jump field 04-11) or MBus

D16-D23 to Am2910 D7-D0 (see Figure 5-18). MWJMPFLDOO-03 are

always input to Am2910 D11-D8.

MBus D16-D23 are selected as input to the jump multiplexer when

MWSKIPFLDOO, 02-04 = 21. (MWSKIPFLDOl is ignored.)

MWJMPFLD04-11

MBUS D16-D23'

SELMBUSFLD -

GND

1

SEL

O EN

-» JMPADDR04-11

Figure 5-18 Jump Multiplexer (Simplified)

5-62

5.3.13 Local Storage RAM
The local storage RAM is a IK-word by 36-bit tristate RAM with 55
ns access time. Its I/O pins are connected to the MBus.
Approximately one-half of the local storage RAM locations are

rpredefined for specific port functions, and many are completely o
partially loaded at initialization.

The local storage RAM is addressed with either global or local
addresses through the RAM mode multiplexer (see Section 5.3.14).
It is loaded from the MBus at CLK2 time when MWSKIPFLDOO, 02-04 -
23. Data is output from the local storage RAM to the MBus when
MWSKIPFLDOO, 02-04 = 22.

5.3.14 RAM Mode Multiplexer
The RAM mode multiplexer is a two-input 5-bit multiplexer that
passes either MWMGCFLDOO-04 or the contents of the local storage
address register (STORADDROO-04) as the five MSBs of the local
storage RAM address (ADR 0-4) MSBs. The microword MWRAMODE bit
(bit 34) selects the input (see Figure 5-19)

.

MWMGCFLDOO-04

STORADDROO-04

MWMGCFLD05-07

MWRAMODE

GND

LOCADDROO-07

Figure 5-19 RAM Mode Multiplexer (Simplified)

The local storage RAM is addressed in one of two modes; global or
local. In global-addressing mode, all 1024 RAM locations are
addressed by MWMGCFLDOO-09 . In local-addressing mode, the five RAM
address MSBs (LOCADDROO-04) are supplied by the local storage
address register (STORADDROO-04) , and the five RAM address LSBs
(LOCADDR05-09) are supplied by MWMGCFLD05-09. Therefore, in
local-addressing mode, one of 32 local storage RAM "partitions" is
addressed by the contents of the local storage address register
(STORADDROO-04); and MWMGCFLD05-09 are an index, addressing one of
32 locations in the addressed partition.

When MWRAMODE is not asserted, MWMGCFLD 00-07 are selected as the
eight local storage RAM address MSBs (LOCADDROO-07) . The two
address LSBs (LOCADDR08-09) do not go through the RAM mode
multiplexer, but are always asserted by MWMGCFLD08-09 . The RAM is
now addressed in global-addressing mode.

5-63

When MWRAMODE is asserted, the contents of the local storage
address register (STORADDROO-04) and MWMGCFLD05-07 are selected as

the eight local storage RAM address MSBs (LOCADDROO-07) . The RAM
is now addressed in local-addressing mode,

5.3.15 Local Storage Address Register
The local storage address register (LSAR) is a 5-bit register that
supplies the five local storage RAM address MSBs in

local-addressing mode. The LSAR is initially loaded from
MWMGCFLDOO-04 at CLK4 time with MWSKIPFLDOO, 02-04 = 20.

The primary function of the LSAR is to allow the local storage RAM

to be address-organized into 32 partitions, each partition having
32 locations. This simplifies queue manipulation functions of the
port. Changing the contents of the LSAR changes the five MSBs of

the local storage RAM address, and accesses a different partition.
The five local storage RAM address LSBs are always addressed by
MWMGCFLD05-09 of the microword, allowing any location within a

partition to be addressed without reloading the LSAR.

5.3.16 Skip Condition Field Decoder
The skip/condition field decoder (COND/SKIP) decodes the

MWSKIPFLDOO-04 field, CRAM bits 43-47, to determine which of the

field functions is to be executed. All of the functions are

internal to port microprocessor operation. The skip functions,
encoded in MWSKIPFLD01-04 , are given in Table 5-10, as are the
condition functions, encoded in MWSKIPFLDOO, 02-04.

Table 5-10 Skip/Condition Function

MWSKIPFLD Function
01-•04 (CCMUX Input)

00 CCCBUSAVAIL
01 CCGRNTCSR
02 CCFEQO
03 CCCSRCHNG
04 CCEBPARERR
05 CCRCVRBUFAFUL
06 CCRCVRBUFBFUL
07 CCXMTRATTN
10 CCEBUSRQST
11 CCINTRACTIVE
12 CCMBSIGN
13 CCMVRPARCHK
14 CCCBUSPARERR
15 CCPLIPARERR
16 CCCHANERR
17 CCCBLSTWD

5-64

Table 5-10 Skip/Condition Function (Cont)

MWSKIPFLD Function
01-04 (CCMUX Input)

20 LOADSADREG
21 SELMBUSFLD
2 2 RDLOCALMEM
23 LDLOCALMEM
24 SELCNSTFLD

5.3.17 Microprocessor Control Logic
The microprocessor control logic controls all of the timing
functions of the port microprocessor. It contains the necessary
control logic to:

1. Write the RAM address register (RAR)

.

2. Write and read/verify the control RAM (CRAM)

.

3. Read the latch address register (LAR)

.

4. Generate RUNCLKl, RUNCLK2, RUNCLK3/ and RUNCLK4 from
CLKl, CLK2, CLK3, and CLK4 respectively.

5. Start and stop the port microprocessor in an orderly way.

5.4 MICROCODE
This section contains the flow diagrams with corresponding
descriptions of the NIA20 microcode, which performs the following
major functions: initialization idle loop, receive, and transmit
and local command. (See Figures 5-20 through 5-23.)

5.4.1 Initialization
Figure 5-20 is a flow diagram of the initialization microcode
routine. When the port is powered-up, there is no valid microcode
in the CRAM. Valid microcode must be loaded and started when the
port is in the uninitialized state. At, the st^irt of the
initialization sequence, the .pO"rt" microcode performs self-tests.
These tests check thi^ Am2901 addressing and operation, the Am2910,
and'the local store Vl^) addressing. If any of these tests fails,
the microcode loops on the FAIL. SELF-TEST location in the fatal
error table.

The microcode next sets the LS — clearing specified locations and
loading others with bit masks and field masks. When the NIA20 is
being initialized, the port driver sets the KL interface data
channel to transfer three words of the port control block (PCB)
over the CBus and into the port. A channel command word (CCW) is
set to transfer PCB words containing the PCB base address, the
physical interrupt assignment (PIA) - physical interconnect (PI)
level assignment, and a reserved word from KL memory to the data
channel

.

5-65

GENERAL
HOUSEKEEPING
(ZERO CNTS,
REGS. ETC.)

GENERATE
MASKS
AND
lOP WORDS

3-WORD CBUS
XFER, START
ADDR. OF PCB

PIA ASSIGN
CACHE PCB
VARIABLES

DRIVER
DISABLE PORT
IN CSR

LOAD
MCAT
AND PTT

PORT DRIVER
SETS
ENABLE PORT

SET CSR
ENABLE
COMPLETE

LOAD UNKNOWN
PTT, MCAT, AND
PTT POINTERS
DETERMINE UPTT
QUEUE LENGTH

/ IDLE \
I LOOP I

SET RCV MEM.
ALLOCATION
(32 X 512)
WRITE FREE
BUFFER FIFO

SET PHYSICAL
ADDR. RAM
(FROM ROM)

^

Figure 5-20 Initialization Microcode Flow Diagram

5-66

In the next sequence of this routine, the port starts the channel
with a CBus START microprocessor command and reads the contents of
these words into the LS . The port now has its PIA and PCB base
address and can request interrupts. After stopping the CBus, the
port writes the physical addresses of the queue interlocks, FLINKS
and BLINKS, error words, and the CCW into specified LS locations.
These addresses are determined by the port by incrementing the PCB
base address value it received in the CBus transfer.

The microcode then writes the basic lOP function control words
for standard (40 + 2n)

,

examine, deposit, and examine and
increment interrupts into the LS. Vectored interrupts are not
used.

Finally, the local store address register (LSAR) offsets to the
port cache addresses that are allocated in the LS. These caches
hold packet or command information and the microprocessor's state
while the packet or command is being processed. This information
includes the queue entries FLINK and BLINK, the interlock word PCB
addresses, the buffer header address, and the current buffer
segment descriptor (BSD). The caches are listed in Table 6-11.

Table 5-11 Cache Base Addresses

Cache Base Address

RCVR 700 LSAR base offset to enter RCVR cache
XMIT 640 LSAR base offset to enter XMIT cache

5-67

The cache locations are referenced by the LSAR offsets listed in

Table 5-12. These offsets are contained in the microword magic

number field and can be referenced by more than one offset. For

example, offsets CQG. FLAGS, CQC. STATE, and CQC.PAK all have a

value of 4. Therefore, a mask is used to isolate a particular bit

or field in the cache word. The bits, fields, and masks for

CQC. FLAGS, CQC. STATE, and CQC.PAK are defined in an LS block

called the command queue status block flag word. Refer to Table

5-13 for a list of these words and the LS mask address. For

example, CSTATE.MSK (LS address 173) is a mask for cache state

bits 20-23 in the CQC. STATE field.

Table 5-12 Local Store Address Register Command Status Block
Offsets

Name
Offset
Value

CQC. LSAR OFF
CQC . INTRLK 1

CQC.FLINK 2

CQC. BLINK 3

CQC. FLAGS 4

CQC. STATE 4

CQC.PAK 4

CQC. OPCODE 5^
CQC. QUEUE 6*
CQC.RSVD 7

CQC.USEDBUF.O 7

CQC.HXCTID 10

CQC.LXCTID 11
CQC.XCTLEN 12

CQC.SNDNAM 13
CQC.MAINTID 13
CQC.BLDRSP.STS 14
CQC.CODREV 14

CQC.SENDl 15

CQC.HDEST 15
CQC.SEND2 16
CQC.LDEST 16

CQC.BHDBASE 17
CQC.BHDLEN 20

Definition

LASAR offset of this
Address of PCB queue
Address of PCB queue
Address of PCB queue
Flags word
Cache state
Packing mode
Operation code word
FLINK address of thi
Command reserved wor
Number of 512. buf
received frame
Transaction ID word
Transaction ID word
Transaction length
Send buffer name
ID, REQID maintenanc
Status field for bui
ID, REQID microcod
word
Sender's station add
Destination station
Sender's station add
Destination station
5

Buffer header descri

block
interlock word
FLINK word
BLINK word

s command
d

used to

1

2

store

e ID word
Id response
e revision level

ress bytes 0-3
address bytes 0-3
ress bytes 4 & 5

address bytes 4 &

ptor address

5-68

Table 5-12 Local Store Address Register Command Status
Block Offsets (Cont)

Name
Offset
Value

CQC .SEGBAS 21
CQC..BSDBASE 22
CQC,.BSDLEN 23
CQC..FBSD 24
CQC..NBSD 25
CQC,.BSDRES 26
CQC..BHDRES 27
CQC,, CASAVE 30
CQC..BCOFF 31
CQC,.BLDRSP.OPC 31

CQC,.BCRES 32
CQC..WCRES 33
CQC..PAKLEN 34
CQC,.PAKRES 35
CQC,.FRQUE 36

CQC. PR TYPE 37

Definition

BSD segment base address
Buffer segment descriptor address

Next BSD address

Saved operation code word from
response queue entry

Transfer length in bytes
Number of words left to transfer
Datagram free queue for no-build
response
Protocol type from received frame

Table 5-13 Command Queue Status Block Flag Word

Name

CC. STATE

CS. FORMAT

LS RAM
Address Bit

206

210

CS. DIRECTION 123

Definition (when bit is on)

20-23 Cache state word

0=FREE
1=MPKT
2=SPKT
3=XMXT
4=NEW

18-19 Packet format

0=lndustry compatible
l=Reserved
2=Reserved

17 Transfer direction

0=CBUS <=PLI
1=PLI <=CBUS

5-69

1. FREE
2. MPKT
3. SPKT
4. XMIT
5. NEW

At this point in the microcode routine, the idle loop is entered.
The port is still in the unintialized state. The packet or command
state is maintained primarily in flag and status bits. The cache
can be in one of the following states:

Cache not currently allocated
Mover has packet (unused)
Suspend packet (await processing completion)
Ready to transmit
Cache just built.

5.4.2 Idle Loop
Figure 5-21 is a flow diagram of the idle loop microcode routine.
This routine is performed after initialization has been
successfully completed and all port microcode functions start from

the idle loop. When a function is completed, the microcode returns
to the idle loop. If the port conducts a power~up or reset, the
idle loop is entered from an uninitialized state.

A standard interrupt request (40 + 2n, PI level 01-07) is the
initial event performed in establishing the idle loop. The
microprocessor compares the INTREQ mask from the LS with the
INTREQ flag. If the flag is set, the FEQO (ALU function=0)
condition code is asserted through the condition code multiplexer
with a condition jump to GEN . INTERRUPT.

If the contents of the CSR have changed, the next idle loop
function examines the CSR by executing a conditional jump to

subroutine CSR.SRV. The jump will be executed when the CSR changed
condition code is asserted through the condition code multiplexer.

The microprocessor saves its copy of the CSR (CSRCPY) in a

temporary register Am2901 RAM location Tl and reads the new CSR
contents into TO and CSRCPY. It then compares the old and new
CSRCPY for a change in CSR bits 30 (DISABLE) or 31 (ENABLE) or the
setting of CSR27 (CMD QUEUE AVAIL) . If either bits 30 or 31 have
not changed or bit 27 was not set, the microprocessor returns
to processing of the idle loop routine.

If DISABLE has been set and the port is uninitialized, the
microprocessor sets CSR12 (disable complete) , and FLAGS bit 22
(disable flag) . If DISABLE is set when the port is in the enable
state, the microprocessor performs the following:

Sets CSR12 (disable complete)
Clears CSR13 (enable complete)
Clears CSR31 (enable)
Clears FLAGS bit 21 (enable flag)
Sets FLAGS bit 22 (disable flag)
Disables the NIA module.

The port has now completed the transition from the enabled to the

disabled state.

5-70

'INTERRUP'T'V YES
GENERATE
INTERRUPT
TO
DRIVER

REQUEST >

. YES

^ YES

X"°

CSR >
CHANGED >

SERVICE
CHANGE—^ (ENABLE,
DISABLE,
CMD QUEUE AVAIL)

X"°

''^RECEIVE \ RECEIVE DONE
SERVICE
RECEIVE PACKET

ATTENTION/

YES

YES

NO

/ \
transmitn
attention/

TRANSMIT DONE
SERVICE
XMIT STATUS
AND RESPONSE

X"°

QUEUE N SCAN CMD
QUEUE AND
PROCESS CMD

EMPTY y

YES

I"
/DATA\
MOVER N

SELF-TEST y

\ /
-* FATAL ERROR

NO

Figure 5-21 Idle Loop Microcode Flow Diagram

If DISABLE has been cleared, the microprocessor clears CSR12
(disable c6mplete) , the FLAGS bit 22 (disable) if CSR31 (enable)
is not set, and the disable bit in the system state word. The
microprocessor returns to continue idle loop processing.

If ENABLE is set and the port was not in disable, the
microprocessor returns to continue idle loop processing.

If ENABLE is set and the port was disabled, the microprocessor
performs the following;

5-71

Set FLAGS bit 23 (run flag)
Set CSR13 (enable complete)
Clear CSR12 (disable complete)
Clear CSR30 (disable)
Clear FLAGS bit 22 (disable flag)
Set FLAGS bit 21 (enable)
Clear system state word bit 22 (disable)
Return to continue idle loop processing
Cache PTT
Cache MCAT
Write ROM address to RAM
Load the free buffer list (FIFO) with addresses used
during NIA packet reception
Set the receive buffer to 32 x 512 (other available byte
sizes are 64 x 256 and 16 x 1024)
Enable the NIA link to receive packets by setting ENABLE
LINK in the link control register.

the
the

The port is now in the enabled state. If ENABLE is cleared, the

microprocessor clears CSR13 (enable complete) , clears FLAGS bit 21

(enable) , disables the NIA, and then returns to idle loop
processing.

If the CMD QUEUE AVAIL bit is set, it is cleared by
microprocessor. When the ENABLE flag is not set,
microprocessor returns to continue processing the idle loop. If

the ENABLE flag is set, the microprocessor sets the queue
available in the LS location port queue status (PQS)

.

The next idle loop function looks for a RECEIVE ATTENTION. If the
receive attention condition code is asserted, the microprocessor
executes a conditional jump to RECEIVE. DONE.

When the microprocessor detects a TRANSMIT ATTENTION, the transmit
status of any outgoing packet is checked. If a transmit attention
is present, a conditional jump to TRANSMIT. DONE is executed. An
XMIT ATTN signal indicates a completed or an aborted transmission,
which enables the transmit attention condition code through the
condition code multiplexer.

The last idle loop event in the routine causes the microprocessor
to check the queues for a command queue entry by comparing the LS

location PQS contents with the ALL.QUES mask. If all command
queues are not empty, a jump to SCAN. QUEUES is executed. If all
the queues are empty, the FLAGS bit 8 (CACHE. FULL) is tested and,
if set, a jump to SCAN. QUEUES is executed.

If a jump to SCAN. QUEUES is executed-, the next command to process
is selected. If a cache is ready for processing, the
microprocessor activates the cache and jumps to SEND. PACKET. If

none of the caches is ready for processing, the code looks for a

command queue entry to process. If a command queue entry is

available, the microprocessor jumps to BUILD. CACHE to start
processing the new command.

5-72

5.4.3 Receive
Figure 5-22 is a flow chart of the NIA receive microcode routine.
This routine is called when the RCV ATTENTION signal is asserted
from the idle loop. The RCV ATTN signal indicates that an incoming
frame has passed the hardware address filtering process and
storage space is available in the NIA receive buffer.

The microprocessor then reads the receive status, and, if any
receive errors are detected, data transfer is stopped, an error
status mask is built in the response status field, and the error
counter is incremented.

When a free buffer parity error is detected, the NIA module is
disabled and a jump to PLCRPE (location 7766) halts the operation.
If no free buffer error is detected, the following are performed:

• Set the error mask
• Increment the receive fail counter
• Reset RCV ATTN
• Return to the idle loop.

If there is no free buffer parity error or no free buffer error or
no other error present, the number of used buffer entries is read
from receive status for the valid number of buffers. If a valid
number of buffers cannot be obtained, the corresponding error
event count is incremented and a return to the idle loop executed.

The receive cache is latched after obtaining the valid number of
buffers. After successfully obtaining the receive cache, the used
buffer list is read the correct number of times, as indicated in
the receive status. With the selection of the first receive buffer
pointer in the used buffer list, the destination address is read
and then filtered. The following bytes are read from the NIA
receive buffer:

1. Destination
2. Source
3. Protocol type
4. Data
5. CRC.

The filtering process determines if the destination address is a
physical, multicast, or broadcast address that matches any of the
listed addresses in the multicast address table (MCAT) . If no
match of the destination address in the received frame results
from this filtering process, the no-match discard frame counter is
incremented and the frame discarded. If the filtering process
matches an address, the source address and protocol type (PT) are
cached. If the protocol type is not enabled, an unknown protocol
type is used before performing a delink queue operation.

5-73

INCREMENT
COUNT AND
BUILD ERROR
STATION MASK

GET NUMBER
OF
USED BUFFERS

INCREMENT
COUNTER

^
NO / VALID

NUMBER

DISCARDW-
FRAME

NO

READ USED
BUFFER LIST

CORRECT
NUMBER OF TIMES

Figure 5-22 Receive Microcode Flow Diagram
(Sheet 1 of 6 sheets)

5-74

USE UNKNOWN
FREE QUEUE
SET POINT FUNK

Figure 5-22 Receive Microcode Flow Diagram
(Sheet 2 of 6 sheets)

5-75

WAIT
THEN TRY
AGAIN

GET
INTERLOCK.

INCREMENT
DISCARD COUNT
FOR RIGHT
PTQ AND
OVER-FRAMES

YES QUEUE
EMPTY

WRITE FREE
QUEUE WITH
USED- RESET
RCV ATTN //unknown\J^^^

USE
UNKNOWN

\. FREE /\queue /
QUEUE
LENGTH

Vno
V

READ LENGTH
FROM FREE
QUEUE HEADER

READ
BSD BASE
ADDRESS

INCRMENT
COUNT, SET
FREE QUEUE
ERROR BIT AN
REQ-INT

CACHE
BSD

Qy-
COMPARE
BSD LENGTH
TO
BUFFER LENGTH

YES
USE RECEIVE
BUFFER SIZE

FOR
MOVER COUNT

USE BSD SIZE

FOR
MOVER COUNT

^
Figure 5-22 Receive Microcode Flow Diagram

(Sheet 3 of 6 sheets)

5-76

DIVIDE SMALLER
BYTE COUNT
BY 4 FOR WORDS

SAVE FULL
WORD AND
PARTIAL WORD
COUNTS

BUILD CCW
AND
START CBUS

LOAD WC-1
TO AM2910
LOOP CNT

READ BYTE
FROM RECEIVE
BUFFER TO PLI

INPUT BUFFER

INCREMENT
RUNNING
BYTE COUNT

NO/ FULL
WORD

YES
ALIGN LAST
WORD AND
WRITE TO
MEMORY o
ABORT (STOP)
CBUS <^

Figure 5-22 Receive Microcode Flow Diagram
(Sheet 4 of 6 sheets)

5-77

DEC
TIMEOUT

Figure 5-22 Receive Microcode Flow Diagram
(Sheet 5 of 6 sheets)

5-78

READ BYTE
AND
DEC COUNTS

NO / RCV
BUFFER
ZERO

CLEAR CACHE
LOCATIONS
MARK AS FREE

BUILD
ERROR
STATUS

^

Figure 5-22 Receive Microcode Flow Diagram
(Sheet 6 of 6 sheets)

5-79

When connecting to the cache fails, a discard frame subroutine is

entered and the frame discarded. In the discard frame subroutine,
the used buffers are written into the free buffer list FIFO, the
RCV ATTN reset, and a flush cache subroutine performed. A flush
cache subroutine clears the cache locations and marks the cache as
free before returning to the idle loop.

A delink queue operation removes an entry from a free queue by
manipulating entry FLINKS and BLINKS in KLIO memory. The port
first generates an EBus interrupt to access an interlock word. If
the queue was interlocked, the port waits for 512 cycles (163.84
MS) and then jumps back to the start of the allocate queue
subroutine.

If the queue was empty, the following steps occur in sequence:

Increment respective protocol type discard count
Write used buffers to free list
Reset RCV ATTN
Set the CSR free queue error bit, if this is a known PT
Set interrupt request flag
Execute a flush cache subroutine (whether queue empty or
known PT)

When the free queue is a known PT, its length is read from the
queue header. If the queue is an unknown free queue, its length is
read from the port control block (PCB)

.

The BSD is then cached and its length compared to the receive
buffer length to determine which of the two lengths is the
smaller. A functional sequence then follows, including:

• Use the smaller of the BSD/receive buffer lengths to set
the data mover count

• Divide word count by four for a byte count
• Save full word/partial word counts
• Build channel command word (CCW)
• Start CBus
• Load word count minus one into the Am2910

loop counter
• Read receive buffer to the port logic interface

input buffer incrementing the running byte count
• Shift each 4 bytes (full word) into the formatter
• Write each full word to host using CBus until the BSD

the buffer is empty (Loop count = zero)

microsequencer

(PLI)

or

When the loop count is zero, the loop stops and the total bytes
read is subtracted from the BSD length and the receive buffer
length. Any partial words that remain in the BSD or receive buffer
are moved and the next BSD accessed, if the BSD equals zero. If
the receive buffer equals zero, the next buffer is selected. A
return to the beginning of the loop, where the smaller size buffer
is selected, restarts the loop to repeat this transfer process.

5-80

Each time a 4-byte word is read from the receive buffer in the
loop, a test for an end-of-frame (EOF) signal is conducted. The
detection of an EOF stops the loop and aligns the format for the
last word as it is written to the host over the CBus. With the
parallel transfer completed, the CBus is then halted by the port
and the following cleanup sequence occurs:

• Update byte counts
• Write the length, destination address, source address,

and PTT to the response queue
• Write the used buffers to the free list
• Reset RCV ATTN
• Increment the receive frame count
• Link entry on response queue

When the entry has been successfully linked on the queue, the
response queue available bit is set in the CSR, if the queue was
empty and the interrupt request flag set. The cache is then
flushed.

5.4.4 Transmit and Local Command
Figure 5-23 is a flow diagram of the transmit and local command
microcode routine. This routine is started from the idle loop when
a CSR change indicates a command queue available.

With the command queue available bit enabled in the CSR, the
microcode scans the queue for command entries. If a command entry
is present, the code disables the command queue available bit in
the CSR, marks the queue available in the port queue status (PQS) ,

and then returns to the idle loop. If no command queue available
entry can be accessed, the subroutine returns to the idle loop.

Next, from the idle loop, if there is a queue marked, the
microcode will try to delink an entry (all delinking of queue
entries uses the same subroutine)

.

If the queue was empty, the microcode clears the PQS command
available bit and returns to the idle loop. When the queue is not
empty; the FLINK is saved in cache, the four-word queue header is
read into cache, and the flag CC.XMIT is set to indicate CBus to
PLI data transfers.

5-81

MARK QUEUE
AVAILABLE
IN PQS

TRY DELINK
CMD QUEUE
ENTRY

5
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 1 of 19 sheets)

5-82

WAIT
THEN
RETRY

READ 4-WORD
QUEUE HEADER
INTO CACHE

SET FLAG
CC.BLDRSP

GET OPCODE
AND
DETERMINE CMD

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 2 of 19 sheets)

5-83

SEND DATAGRAM

SET FLAG
NEED.PAD

J

SET FLAG
SELF-DIRECTED
DATAGRAM

SET FLAG
BSD

SET PACKING
MODE FOR
LATER XMIT
DISPATCH

0— READ WORD
LENGTH FROM
COMMAND

BUILD ERROR
RSP AND LINK
ON RSP QUEUE

CACHE PT, FREE
QUEUE ADDR,
DEST.ADDR
FROM COMMAND

^
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 3 of 19 sheets)

5-84

READ BSD
BASE ADDR

CACHE
MOVER CNT

READ BSE AND
CACHE SEG.ADDR
NEXT PKT.LENGTH

REST NIA
XMIT BUFFER
ADDR

SUSPEND
CACHE

WRITE CACHE
DEST.ADDR TO
XMIT BUFFER
THRU FMTR

WRITE SOURCE
ADDR TO XMIT
BUFFER THRU
FMTR

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 4 of 19 sheets)

5-85

WRITE 2-BYTE
PROTOCOL TYPE
TO XMIT BUFFER

&*

WRITE LENGTH
TO NEXT 2-BYTE
IN XMIT BUFFER

DETERMINE
SMALLER
COUNT, IF BSD

USE BSD
SIZE FOR
MOVER

DIVIDE SMALLER
BY 4 FOR
WORD COUNT

SAVE FULL
AND PARTIAL
WORD COUNTS

BUILD CCW
AND START
CBUS

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 5 of 19 sheets)

5-86

GET WORD
FROM Host
TO FMTR

SHIFT FMTR
OUTPUT BYTE
TO PLI OUTPUT

PLI OUTPUT
TO AM2901

READ LAST
WORD OVER
EBUS TO FMTR

^
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 6 of 19 sheets)

5-87

SHIFT FMTR
OUTPUT BYTE
TO PLI

SUBTRACT
FRAME LENGTH
FOR MINIMUM
PACKET SIZE

LOAD RESULTS
MINUS 1 INTO
AM2901 LOOP CNT

WRITE BYTE
OF ZEROS TO
AM2901

WRITE
TRANSMIT
END OF FRAME

5
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 7 of 19 sheets)

5-88

CLEAR FLAG
XMIT.PEND

SET DISABLE
XMITCRC
IN LINK CNT.
REGISTER

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 8 of 19 sheets)

5-89

RESTART
RETRY

CLEAR FLAG
XMIT.BUSY
MARK CACHE
AS NEW

HALT
FATAL ERROR
LOC.7767

INCREMENT
CORRECT
COUNT

INCREMENT
CNT, BUILD
MASK, READ TDR

^
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 9 of 19 sheets)

5-90

CLEAR DISABLE
XMITCRC

UPDATE
RUNNING BYTE
COUNT

UPDATE
XMIT
COUNT

YES

(H>*
SAVE COMPLETE
OPCODE WORD
IN CACHE

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 10 of 19 sheets)

5-91

WAIT
THEN
RETRY

READ RSP
QUEUE BLINK

&

SET FLAG
QUEUE EMPTY

RESET
INTERLOCK

BUILD MASK
FOR INTERRUPT
AND SET FLAG
INT.REQ

MARK CACHE
AS FREE

^
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 11 of 19 sheets)

5-92

GENERATE
NON-VECTOR
INTERRUPT

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 12 of 19 sheets)

5-93

B) LOAD MULTICAST ADDRESS TABLE

32 FOR COUNT
MCAT STARTING
ADDRESS IN PCB

WRITE 4-WORD
QUEUE HEADER
TO HOST MEMORY

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 13 of 19 sheets)

5-94

CLEAR FLAG
LCLCMD

LOAD PTT

SET FLAG
LCLCMD

BUILD CCW
AND
START CBUS

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 14 of 19 sheets)

5-95

WRITE 4-WORD
QUEUE HEADER
TO HOST MEMORY

CLEAR FLAG
LCL.CMD

READ COUNTERS

SET FLAG
CLR.CNT

WRITE 4-WORD
QUEUE HEADER
TO HOST MEMORY

BUILD CCW
AND
START CBUS

44 WORDS
RDCNT BUFFER
ADDR

Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 15 of 19 sheets)

5-96

CLEAR FLAG
LCLCMD

CLEAR LS
LOCATIONS
CONTAINING
NET COUNTERS

©

CLEAR FLAG
LCLCMD

©
Figure 5-23 Transmit and Local Command Microcode Flow Diagram

(Sheet 16 of 19 sheets)

5-97

DATAGRAM RECEIVE

WRITE PLI

SET FLAG
LCL.CMD

READ PLI

COMMAND WORD
INTO AM2901

DETERMINE
FUNCTION

WRITE 4-WORD
QUEUE HEADER
TO HOST MEMORY

WRITE PLI

COMMAND
WORD

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 17 of 19 sheets)

5-98

READ PLI

WRITE 4-WORD
QUEUE HEADER
TO HOST MEMORY

WRITE PLI

COMMAND
WORD

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 18 of 19 sheets)

5-99

READ STATION ADDRESS WRITE STATION ADDRESS

WRITE 4-WORD
QUEUE HEADER
TO HOST MEMORY

READ ADDR,
MODE BITS,

AND RETRY CNT
FROM COMMAND

WRITE STATION
ADDRESS FROM
LOCAL STORE

WRITE NIA
RAM WITH
NEW ADDR

WRITE MODE
BITS AND
VERSION
NUMBER

GET PRESENT
MODE BITS

WRITE 4-WORD
QUEUE HEADER
AND STATION
ADDRESS

Figure 5-23 Transmit and Local Command Microcode Flow Diagram
(Sheet 19 of 19 sheets)

5-100

Next, the microcode will set flag CC.BLDRSP, if the response bit
is set in the operation code word and determine the operation code
of the command.

This transmit microcode routine is then dispatched according to
the operation code into nine subroutines:

1. Send datagram
2. Load multicast
3. Load protocol type table (PTT)
4. Read counters
5. Datagram receive
6. Write port logic interface (PLI)
7. Read PLI
8. Read station address
9. Write station address

1. Send Datagram Subroutine
Initially, the microcode in this subroutine looks at the PAD, the
included cyclic redundancy check (ICRC) , and the buffer segment
descriptor (BSD) bits in the operation code word and sets the
corresponding flag, if needed. The microcode then reads the length
from the command and if the PAD flag is not set, a check is made
to determine if the minimum frame size has been exceeded. If not,
an error response is built and then linked onto the response
queue. If the PAD flag is set, the code continues on to the next
instruction.

If the ICRC bit is set in the FLAGS field, a 4-byte ICRC is added
by the port driver to the datagram format, in the absence of a
port-supplied CRC. This feature must be used in transmitting
self-directed datagrams to maintain the CRC integrity of the
frame. If the ICRC is not set, the port next examines the setting
of the BSD bit.

Next, the microcode caches the protocol type, the free queue
address, and the destination address. If the BSD flag is set, the
code reads the BSD base address and then caches the BSD. In either
case, the mover counts are cached and the cache state is set to
NEW. If either flag XMIT.BUSY or XMIT.PEND is set, the cache is
suspended and the port returns to the idle loop. When both flags
are not set, the following occurs:

• Set flag XMIT.PEND
• Reset NIA transmit buffer address
• Write cached destination address to transmit buffer

through data mover/formatter
• Write source address to transmit buffer through data

mover/formatter
• Write 2-byte protocol type to transmit buffer.

5-101

The code now tests the PAD flag and if the flag is set, the actual

length is written to the next 2 bytes in the transmit buffer. If

not, the subroutine continues on to perform the following set of

functions

:

1. Use the sma
2. Divide smal
3. Save full a

4. Build chann
5. Load word c

6. Read word f

7. Loop back f

8. Loop back a

9. Shift forma
10. Move PLI ou

Her BSD/packet size for data mover
ler length by 4 for word count
nd partial word counts
el command word (CCW) and start CBus
ount minus one to Am2910 loop count
rom host to formatter over CBus
or next word, if loop count is not zero
nd shift, if full word (4 bytes)
tter output byte to PLI output
tput to transmit buffer.

When the loop count is zero, the microcode checks for any

remaining partial words (1-3 bytes). If any partial word remains,

the last word is read over the EBus to the mover/formatter and

then shifted out to the transmit buffer.

The CBus is then stopped and the BSD flag tested. If it is a BSD,

the new counts are calculated. When there are more bytes to

transfer, a jump-back repeats the ten functions. If this is not a

BSD or if the transfer is complete, the PAD flag is tested. With

the PAD set, the remaining bytes are padded with zeros. The

transmit end-of-frame (TX EOF) is written when padding is done or

if the PAD is not set. Both flags XMIT.PEND and ICRC can now be

cleared, but if they are set, the transmit CRC in the link control

register is disabled.

With the flag XMIT.BUSY set, a transmit frame instruction to

NIA hardware is executed. The cache state is set to transmit

the port returned to the idle loop.

The assertion of transmit attention in the idle

connection to the transmit cache and reads the

When the status is checked and errors are

corresponding error counter is incremented and

built. The following is a list of error types:

the
and

loop initiates a

transmit status.
indicated, the

an error status

Late collisions
Transmit parity error
Loss of carrier
Transmit too long
Heartbeat error

When there are transmit errors, the microcode restarts the retry
subroutine.

Detection of a transmit buffer parity error causes the following

to be performed:

5-102

• Clean the stack
o Clear flag XMIT.BUSY
• Mark cache as NEW.

Next, if retries are not exhausted, the microcode jumps back to
recache the command, reloads the transmit buffer, and attempts totransmit again. If the retries are exhausted, the port is haltedat location 7767.

If no errors or an error other than a transmit buffer PE is
detected, the microcode checks for a collision retry and then
increments the corresponding error counter. When more than 16retries have been attempted, an error status is built and the timedomain ref lectometry (TDR) read.

In all error cases, the ICRC flag is tested and the disable CRC,
if set, bit cleared in the link control register. The flag
XMIT.BUSY is then cleared, and if no transmit error is detected,
the running byte count is incremented and the transmitted framescounted.

If the response flag is not set when checked, the cache is markedfree and the port returned to the idle loop. When the response
flag IS set, the completed operation code word, including theerror status, is saved in cache and written into host memory.
Next, the microcode attempts to link the response onto the queueWith an empty queue, the flag INTERRUPT. REQUEST is set. The cache
IS then marked as free and the port returned to the idle loop.

Next, from the idle loop, the microcode tests for a set interrupt
request, which causes the port to wait for an idle EBus. When the
EBus is idle, the response available queue bit in the GSR is set
and a nonvectored interrupt generated. The interrupt request flag
IS cleared and the port returned to the idle loop.

2. Load Multicast Table Subroutine
The load multicast table subroutine is entered when the queuecommand operation code is a load multicast. This subroutine
performs the following:

1. Sets the flag LOCAL. COMMAND
2. Builds a channel command word (CCW)
3. Starts the CBus
4. Reads the word from CBus to Am2901
5. Writes the local store (LS) with Am2901
6. Repeats steps 4 and 5 above 32 times (since there is no

automatic increment of the LS for the loop)

.

This subroutine then tests the flag CC.BLDRSP. If the flag is set,
a four-word queue header is written to the host memory and the
flag LOCAL. COMMAND is cleared. The port then saves the complete
operation code word in cache and tries to link onto the response
queue. If the flag CC.BLDRSP is not set, the cache is flushed.

5-103

3. Load Protocol Type Table (PTT) Subroutine
The load protocol type table (PTT) subroutine is entered when the
queue command operation code is a load PTT. This subroutine
performs the following:

1. Sets the flag LOCAL. COMMAND
2. Builds a CCW
3. Starts the CBus
4. Reads word from CBus to the Am2901
5. Writes local storage with the Am2901
6. Repeats steps 4 and 5 above 47 times.

This subroutine then tests the flag CC.BLDRSP and if set, a

four-word queue header is written to host memory and the flag
LOCAL. COMMAND is cleared. The port then saves the complete
operation code word in cache and tries to link onto the response
queue. If the flag is not set, the cache is flushed.

4. Read Counters Subroutine
The read counters subroutine is entered when the queue command
operation code is read counters. This subroutine performs the
following

:

1. Sets the flag LOCAL. COMMAND
2. Test CLR.CNT bit in operation code word and if set,

causes the flag CLR.CNT to be set
3. Writes a four-word queue header to host memory
4. Builds a CCW
5. Starts the CBus
6. Reads a word from local store to the Am2901
7. Write host with the Am2901
8. Repeats steps 6 and 7 above 44 times.

Next, the assertion of the flag CLR.CNT clears the local store
locations containing net counters. The flag LOCAL. COMMAND is then
cleared. This subroutine saves the complete operation code word in
cache and tries to link onto the response queue,

5. Data Scan Receive Subroutine
The datagram receive subroutine is entered when the queue command
operation code is a datagram receive. This subroutine halts port
operations at location 7750. A datagram receive is, as its
designation implies, a receive function and not a transmit
function, thereby indicating that fatal malfunction in the system
has occurred.

6. Write Port Logic Interface (PLI) Subroutine
The write port logic interface (PLI) subroutine is entered when
the queue command operation code is a write port. This subroutine
performs the following:

1. Sets the flag LOCAL. COMMAND
2. Reads the PLI command word into the Am2901

5-104

3. Determines the PLI function
4. Executes the PLI function.

With the assertion of the flag CC.BLDRSP, a four-word queue header
is written to the host memory — in addition to the writing of a
PLI command word. This subroutine saves the complete operation
code word in cache and tries to link onto the response queue. If
the flag is not set, the cache is flushed.

7. Read PLI Subroutine
The read PLI subroutine is entered when the queue command
operation code is a read PLI. This subroutine performs the
following

:

1. Sets the flag LOCAL. COMMAND
2. Reads the PLI command word
3. Determines the PLI function
4. Executes the PLI function.

Next, the assertion of the flag CC.BLDRSP causes a four-word queue
header to be written into the host memory — in addition to
writing the PLI command word. This subroutine saves the complete
operation code word in cache and tries to link onto the response
queue. If the flag is not set, the cache is flushed.

8. Read Station Address Subroutine
The read station address subroutine is entered when the queue
command operation code is a read station address. This subroutine
performs the following:

1. Writes four-word queue header into host memory
2. Writes the station address from local store to host

memory
3. Writes mode bits and version number to host memory.

This subroutine saves the complete operation code word in cache
and tries to link onto the response queue.

9. Write Station Address Subroutine
The write station address subroutine is entered when the queue
command operation code is a write station address. The subroutine
performs the following:

1. Reads address, mode bits, and retry count from the
command

2. Writes the NIA physical address RAM with a new address
3. Changes any required mode bits.

If the flag CC.BLDRSP is set, a four-word queue header and station
address is written into the host memory. This subroutine saves the
complete operation code word in cache and tries to link onto the
response queue. If the flag is not set, the cache is flushed.

5-105

APPENDIX A
INSTALLATION OF NIA20 IN KLIO-D

A.l OVERVIEW
This appendix describes the installation of the NIA20 network
interconnect adapter in a KLlO-D system. Figures A-1 and A-2 show
the NIA20 installed in a KLIO-D, rear and front views,
respectively. Table A-1 itemizes the NIA20 parts and Table A-2
lists the harness and cable connections used in the NIA20/KL10-D
installation.

The NIA20 installation uses assigned slots in RH20 logic assembly
positions 4 and 5, with RH20 positions 6 and 7 reserved for
installation of a CI20 computer interconnect. A system containing
an NIA20 is limited to a maximum of four RH20s. In the
installation of an NIA20, a module blank assembly. Digital P.N.
7019266-00, is used to prevent plugging any other module into RH20
position 4 (described in Section A. 4. 3, instruction 7 — see
Figure A-3)

.

NOTE
The prior or subsequent installation of a
CI20 computer interconnect with an NIA20
requires minor deviations from the
following procedures, which are described
herein when applicable.

Installation of the NIA20 in an existing system requires
implementing the following procedures:

1. Unpacking and checkout of installation kit
2. Preinstallation checkout
3. Backplane wire adds
4. Installation of port modules
5. Installation of power supply regulator
6. Installation of NIA card cage
7. Installation of NIA current limiter
8. Installation of dc power harness
9. Installation of vane switch harness
10. Installation of dc voltage monitor harness and module
11. Installation of PLI bus
12. Installation of fan ac cable and power cord
13. Installation of internal NIA cable
14. Installation of KLIO adapter board and blank module

assembly
15. Checkout.

The following sections provide detailed instructions for
performing each of these above installation procedures.

A-1

861 POWER
CONTROLLER-

FAN AC
CABLE-

z?

M

rt^^
on a
OH D a

*k:

s
J'M^

I/O CABINET

.1 I.

3622344-02
MODULE
UTILIZATION
DECAL

r7~X
'-"'^— BNE3

,NIA20
CURRENT
LIMITER

REAR VIEW

CPU CABINET TO
H4000

-NIA20
CARD CAGE

-CI 20
CARD CAGE

-DC VOLTAGE
MONITOR
BOARD

INTERNAL
CABLE
(SEE FIGURE A-6)

-FAN AC
CABLE

PLI BUS

NIA20 PORT
MODULES
MBUS

H7420
POWER
SUPPLIES

-REAR DOOR

SWING-AWAY
FRAME

Figure A-1 NIA20 in KLIO-D, Rear View

A-2

FRONT VIEW

Figure A-2 NIA20 in KLIO-D, Front Vi ew

A-3

Table A-1 NIA20 in KLIO-D, Parts List

Line
Item

Part
No. Description Qty

1 7019268-00
2 7019268-01
3 7428312-01
4 7430279-01
5 9007786-00
6 9006073-01
7 9107240-09
8 9105740-55
9 1213716-00
10 7020539-06
11 7019274-06
12 7021197-01
13 7430277-01
14 7019893-3L
15 BC06R-08
16 7019266-00
17 M3002-00
18 M3003-00
19 M3001-00
20 9007032-00
21 1213715-00
22 H7440-00
23 L0072-00
24 7014103-00
25 9107673-06
26 7011432-02
27 9007651-00
28 9006664-00
29 7021196-01
30 7021194-01
31 5414506-01
32 7019270-lJ
33 3621499-01
34 3613272-00
35 9007031-00
36 9008264-00
37 3621498-01
38 5415695-01
39 9006022-01
40 9006633-00
41 7020488-00
42 3617674-00
43 3617674-01
44 3617880-09
45 3621501-02

Card cage assy IPA-20-L 1

Card cage assy CI20 1

Bracket, interface 1

Bracket, support 2

Retainer, U-nut 10-32X 9

Screw, mach pan phil 10- 17
Wrap, cable, .250 OD vinyl wht A/R
Wire (wrap) 30 AWG KYNAR UL14 A/R
Spacer, foam polyu 1/2 5

Cable, fan ac 1

Cable, fan ac 1

Harness, dc-5.2 dc+5 1

Support, bracket interface 1

Cable assy Ethernet 1

BC06R I/O cable 1

Module blank assy 1

CI20 microprocessor, multiwire HE 1

CI20 CBus/PLI interface, multiwire 1

CI20 EBus interface, multiwire H 1

Tie, cable bundl. Dia 0-l-3/4"=101 A/R
Clip, flat cable w/adhesive bk 5

POAl H7440 1

NI20 (KLIO to NI adapter) 1

Blank module assy 1

Pwr cord, term 3-14 SJT 115 1

Pow cord extension 50 Hz 1

Washer, lock external steel 17
Washer, flat SST 17
Harness, dc voltage monitor 1

Harness, vane switch 1

Voltage, monitor board 1

Bus, cable, M assy 1

Label, DCV monitor CI20 1

Label, adh back. Mylar cap 1

Tie, cable bundl. Dia 0-3/4"=101 36
Mount, cable tie, adhesive back A/R
Label, airflow CPU CI20 1

Current limiter 1

Screw, mach pan Phil 6- 4

Washer, lock internal steel 4

Cable, short switch vane 1

Label, serial/power W/0 UL + CSA 1

Label, serial/power W UL & CSA 1

Label, class A subassembly 1

Label, module location, NI20 1

A-4

Table A-2 NIA20 in KLIO-D, Harness and Cable Connections

Harness Connections

Parts
List Harness Terminals
Item
No. Point Connection Connection Remarks

12 — PI NIA20 BP J2
P3 NIA20 BP Jl

5 — CPU #3 BP GND
6 — CPU #3 BP -5.2 H

P2 Jl

13 — PI H7440 Jl See Figure A-5
7

8

30 — PI Fan Bracket Jl See Note 1

P2 See Figure A-11 See Note 1

Jl See Note 2 See Note 1

P3 NIA20 BP J6 See Notes 1 ana 3

29 — P2 NIA20 BP J5
PI Mon. Board Jl Parts List Item 31

6 — +5V Monitor Board Jl-5 See Figure A-2

41 P3 CI20 Cable Vane Switch See Note 4

P2 — NIA20 Fan Bracket Jl See Note 4
PI — CI20 Fan Bracket Jl See Note 4

NOTES:

1. Items not needed when CI kit is installed:

Description

Retainer, U-nut 10-32X
Screw, Mach Pan Phil 10-
Washer, lock ext ST
Washer, flat SST
Bracket, interface
Harness, vane switch
Bracket, support
Support, bracket interface
Wrap, cable, .250 OD vinyl Wht

2. Jl on parts list Item 30 (harness, vane switch) connects with
existing connector P4 (see Figure A-12)

.

3. Relocate cable from CI20 card cage at J6 connector and insert
into NIA20 card cage J6 connector.

Item Qty Part No.

5 8 9007786-00
6 8 9006073-01
27 8 9007651-00
28 8 9006668-00
3 1 7428312-01
30 1 7019862-00
4 2 7430279-01
13 1 7430277-01
7 A/R 9107240-09

A-5

Table A-2 NIA20 in KLIO-D, Harness and Cable Connections (Cont)

4. Parts list Item 4 used when CI20 and NIA20 are installed
together

.

Cable Connections

Parts
List '

Item From To
No. Unit Location Ref. Desig. Unit Location Ref.Desig. Remarks

10 or C.Cage Gnd Gnd 25 or Jl PI NIA20-CB
11 Fan Brk J2 P2

Connect to
any avail,
switched
outlet

14 C.Cage J4 PI

25/26 Item 10
or 11

PI Jl

1/2 C.Cage Gnd -

15 NI20 BP J3 PI Stripe
Down

32 M3003 Jl P3
M3001 Jl PI

38 RH20 BP BlONl _

B13B1 -

C10L2 -

B13B2 -

C10K2 -

B13U1 -

C10T2 -

C13B1 -

C12H2 -

C13N1 -

C12L1 -

C13B2 -

C14H2 -

C14F1 -

A14J2 -

C14P1 -

C14K2 -

B14J1 -

C20H2 -

C20F1 -

A20J2 -

C20P1 -

C20K2 -

B20J1 -

25 or Jl
26

41 P2

861 PC PI

Cabrail Hole 1

RH20 M3003 J2 P2 Stripe
DTE CC Up

M3002 Jl P2

RH20 BP B13B1
B19B1
B13B2
B19B2
B13U1
B19U1
C13B1
C19B1
C13N1
C19N1
C13B2
C19B2
A15R2
F15A1
A15E1
A15D2
A15S2
B15A1
A21R2
F21A1
A21E1
A21D2
A21S2
B21A1

A-6

A. 2 UNPACKING AND CHECKOUT
Before unpacking any equipment, move all boxes into the computer
area. Check the shipment against the packing list to be sure that
all boxes were sent. If any boxes are missing, contact the
customer and the branch field service manager. Check that allboxes are sealed, and there is no sign of external damage, suchas dents, holes, or damaged corners.

If any boxes are open or damaged, document it on the installation
or field service report and inform the customer. Open the boxes
one at a time, starting with the box marked "READ ME FIRST" and
find the packing slip. Check the contents of the box against thepacking slip and examine each item for damage. Note missing or
damaged items on the installation report or field service report.

This completes the unpacking and checkout phase. Advise the branch
field service manager of any problems during this phase. If any
Items are damaged, the branch field service manager may want the
customer to file an insurance claim. For missing items, the branch
field service manager should get a short-ship request.

A. 3 EQUIPMENT NEEDED FOR INSTALLATION AND CHECKOUT
The following equipment is required for installation and checkout
of the NIA20:

1. Wire wrap tool. No. 30 AWG , Digital P.N. 29-18301
2. Wire unwrapping tool. No. 30 AWG, Digital P.N. 29-13513
3. Regular Phillips screwdriver
4. Tektronix 475 oscilloscope or equivalent (100 MHz)
5. KLAD pack
6. Scope, digital voltmeter.

A. 4 INSTALLATION PROCEDURE

A. 4.1 Preinstallation Checkout
Before performing the installation, verify that the currently
configured system is operating properly, to preclude the
possibility of present system problems being ascribed to the NIA20
after its installation.

1. Remove all customer media to minimize the possibility of
corrupting customer data.

2. Mount the KLAD pack, bring up the diagnostic monitor, and
run the "B" string to verify that the system is working
properly.

3. Power-down the system.

4. Verify that the system has a M8532-YA board installed.
If not, replace the currently installed M8532 with a
M8532-YA.

A-7

8.

RH20 positions 4 and 5 are used for the NIA20. If there

is an RH20 in position 4, remove it. If there is an RH20

in position 5, leave it temporarily installed and perform

diagnostic DFRHB to verify the reliability of the

backplane wiring. If there is no RH20 in position 5,

relocate a module from one of the other RH20 positions to

position 5.

Power-up the system and run diagnostic DFRHB. This

verifies that the backplane wiring of RH20 position 5 is

functional. Power-down the system and reinstall the RH20

in its original position.

Perform diagnostic DFRHB also in RH20 position 7 to

verify the reliability of existing backplane wiring in

RH20 positions 6 and 7, before implementing any NIA20

modifications.

Power-down the system and reinstall the RH20 in its

original position.

A. 4. 2 Backplane Wire Adds
For the NIA20 installation, 24 new wires must be added to RH20

backplane positions 4 and 5. An examination of the RH20 backplane

must be performed to confirm the physical addition of the wire

wraps listed in Table A-3. The table contains a Check column for

the wire installer to record installation progress.

To prepare the wire adds, strip approximately 1 inch of insulation

from the wire to allow sufficient turns to be made on the wire
check in the blankwrap post. After each wire is added, enter a

space adjacent to the wire listing in Table A-3.

To assure the reliability of the new wiring, an ohmmeter

each new wire add should be performed by a person other

wire installer.

check of
than the

Table A-3 NIA20 in KLIO-D Wire Adds

Signal Name From To/From

EBUS Dll L BlONl B13B1

EBUS D12 L C10L2 B13B2
EBUS D13 L C10K2 B13U1
EBUS PARITY L C10T2 C13B1
EBUS PIOO L C12H2 C13N1
EBUS PARITY ACTIVE L C12L1 C13B2
MPR7 MWBUSCTLFLDOl H C14H2 A15R2
MPR7 MWMGCFLD08 H C14F1 F15A1
MPR7 MWTIMEFLD H A14J2 A15E1
CBIl CLK2 L C14P1 A15D2

To

B19B1
B19B2
B19U1
C19B1
C19N1
C19B2

Check

A-8

Table A-3 NIA20 in KLIO-D Wire Adds (Cont)

Signal Name From To/From To Check

CBI2 CLK4 L C14K2 A15S2
CB12 CCCHANERR L B14J1 B15A1
MPR7 MWBUSCTLFLDOl H C20H2 A21R2
MPR7 MWMGCFLD08 H C20F1 F21A1
MPR7 MWTIMEFLD H A20J2 A21E1
CBIl CLK2 L C20P1 A21D2
CBI2 CLK4 L C20K2 A21S2
CBI2 CCCHANERR L B20J1 B21A1

A. 4. 3 Installation of Port Modules
Protective backing is placed on the lower third noncomponent side
of each port module and the upper third of the noncomponent side
of the M3002. As the modules are inserted and/or removed, the
protective backing protects the MBus and PLI bus cables. The
protective backing should not interfere with the card guide or
cover the gold finger contacts on the module. Insert the portmodules as follows:

1. Connect MBus cable. Digital P.N. 7019270-lJ. Be sure to
orient the cable so that the flat wire comes out of the
cable header away from the board, as shown in Figure A-3.

2. Insert the M3001 EBus interface/port ALU module in the
rightmost slot of RH20 position number 5 (slot 19,
looking at the backplane from the module side) . The arrow
on cable should be aligned with the arrow on board
connector.

3. Connect the MBus cable to the M3002 port microprocessor
module as shown in Figure A-3.

4. Insert the module M3002 in slot 20 to the left of the
installed M3001 as shown in Figure A-3.

5. Connect the MBus cable to the M3003 module as shown in
Figure A-3.

6. Install the M3003 CBus/PLI interface module in slot 21,
which is located to the left of the installed M3002.

7. Install the module blank assembly. Digital P.N.
7019266-00, in RH20 position 4, slot 22. This assembly
blocks slots 22, 23, and 24. It prevents modules from
being inserted into RH20 position 4 and provides a baffle
for system cabinet airflow.

8. Perform an ohmmeter check between PT17U and ground to
verify that there are no shorts to ground.

A-9

M3002

J r- M3001
VL N_V SLOT 1

9

Figure A-3 MBus Cable Interboard Connection, Top View

9. Fold the MBus cable into the module blank assembly as

shown in Figure A-3.

10. Close the module door.

11. Attach the self-sticking module utilization decal.
Digital P.N. 3622344-02, on the upper rear baffle panel.

12. Power-up the KLIO.

13. Readjust the existing +5 V power supply to 5.0 +/- 0.25

V. This adjustment is located on H7420 number 1 in H744
number 4. The location of this regulator is farthest away
from the circuit breaker. The voltage is monitored at

+5F, between PT17U and ground.

A-10

14. Type MR (CR) with KLDCP loaded and running; then type FXl
(CR) in response to the command prompt, as shown below:

>. MR (CR)

>. FXl (CR)

15. De-skew the port modules using a Tektronix 475 or
equivalent 100 MHz minimum oscilloscope and perform the
following steps. Figures A-4 and A-5 shows the acceptable
waveform pattern displays of the NIA20 de-skew timing.

16. Connect channel 1 of the oscilloscope to MTR MBOX CLK H,
4D33P1, on the CPU backplane. Use a ground clip.

1

~

\

=nJ -^

':VA
in 1 1 1 1 1 1 1 1 1 1 1 1 Mid MM Mil 1 1 1 1 rill

L
1 1 1 1 1 1 1 1 MM

Ji

Mil

t
MM

A.
1 1 1

1

\ayv S/'"»/^> \y

.

V-
w

I

~_

50rnV
':

Z 20
-J
iS

EXTERNAL SYNC
(CHTOH, 4B09K1)

EXTERNAL SYNC (CHTO H)

Figure A-4 NIA De-skew Timing. External Sync (CHTO H)

17. Set the time base to 20 ns.

18. Set channel 1 vertical gain to 0.5 V/division. Set the
ground reference to 1.3 V above the horizontal center
level of the oscilloscope (MTR MBOX CLK H is an ECL
signal)

.

19. Set the oscilloscope sync to positive external.

20. Connect external sync input to CHTO H, 4B09K1 on the CPU
backplane. Use a ground clip.

21. Connect channel 2 to CDSl, EBUS CLK L, 2A21F1 on the I/O
backplane. Set the channel 2 vertical gain to 0.5
V/division. Use a ground clip. To measure TTL voltages.

A-ll

CHANNEL 2

(EBUSCLK L, 2A21F1)

CHANNEL 1

MTR MBOX CLK,

(4D33P1)

EBUS CKL L AND MTR MBOX CLK

Figure A-5 NIA20 De-skew Timing. EBus CLK L and MTR MBOX CLK

set the ground reference to 1.5

center line of the oscilloscope.
V below the horizontal

22. Press the trigger view switch of the oscilloscope and

display the external sync. Adjust the display, so that

the rising edge of the external sync aligns with the

vertical center line of the oscilloscope.

23. Display MBOX CLK H, channel 1. Identify the rising edge

of MBOX CLK H that occurs prior to the vertical center

line of the oscilloscope. Display channel

2.

1 and channel

24. Put the KLIO-D in the override fault state. Remove
I/O rear door to access the I/O backplane.

the

25. Locate the bottom potentiometer on the clock module

(M8559) in slot 12 of the I/O backplane. Using this

potentiometer, adjust the falling edge of channel 2, EBUS

CLK L so that it crosses the rising edge of MBOX CLK H.

This crossing occurs on the horizontal center line of the

oscilloscope.

26. Disconnect all probes.

27. Mount the KLAD pack on the front end RP06.

28. Load and run diagnostic DFPTA to verify proper

functioning of the port modules. If the modules fail,

troubleshoot as directed by the diagnostic. If the

modules are functioning properly, continue with the

installation.

A- 12

A. 4. 4 Power Supply Regulator Installation
Three H7420 power supplies are located on the rear swing-away
frame door of the I/O cabinet as shown in Figure A-1 . The H7440
regulator to be added is installed in the upper H7420 power supply
location. This additional +5 V regulator is required to support
the NIA20 card cage and is installed as follows (see Figure A-6)

:

1. Remove the spare slot filler panel from slot 5 of the
H7420 number 1 power supply. Save all existing hardware.

2. Take the new H7440 regulator from the kit and install the
H7440 in slot 5 of H7420 number 1, using two screws on
top and one thumbscrew at the bottom. Some systems may
use H744 or H7440 regulators.

PT7

J3 15 PIN CONNECTOR

DC HARNESS

Figure A-6 H7420 Power Supply

A-13

A. 4. 5 Installation of NIA20 Card Cage/Cable
To install the NIA20 card cage and the internal NIA20 cable,

perform the following operations (see Figures A-7 and A-8)

:

1. Install the two NIA20 mounting brackets. Digital P.N.
7430278-01, as follows:

NOTE
When a CI20 is installed, the NIA20 is

mounted as shown in Figure A-1.

Remove and reposition any tie-wrapped cables from the

right frame member of the CPU cabinet (viewed from the

rear) to accommodate the NIA20 mounting brackets and card
cage

.

Install a total of 8 U-nuts (Tinnerman nuts) , Digital
P.N. 9007786-00, in the swing-away frame of the CPU
cabinet (viewed from the rear) .

Insert Tinnerman nuts into frame holes 3, 4, 41, and 42

counting down from the top of the swing-away frame (see
Figure A-7) . Four Tinnerman nuts are inserted into each
side of the frame.

Check that the lip of each support bracket is at the
bottom. Use four 10/32 one-half inch Phillips panhead
machine screws. Digital P.N. 9006073-01 and four No. 10
starlock washers. Digital P.N. 9007651-00 on each side of
the swing-away frame.

2. Locate the NIA20 internal cable strain relief (white) on

the left side of NIA20 card cage (see Figure A-8).
Because of the inaccessible location of this strain
relief once the card cage is installed, the internal
cable is routed through it and connected to the rear J4
connector on the card cage prior to installing the card
cage.

3. Locate the three-foot internal NIA20 cable. Digital P.N.
7019893-3L.

4. Prepare the internal NIA20 cable for installation by

positioning a stick mount on the right-side vertical
frame member of the CPU cabinet (viewed from the rear) ,

above the bracket interface (see Figure A-9)

.

5. Route the three-foot internal NIA20 cable through the
white plastic strain relief on the NIA20 card cage.

A-14

NIA20
CARD -

CAGE

swing-away
"frame

REAR
CPU CABINET
DOOR

NIA20 CARD CAGE
MOUNTING
BRACKETS

Figure A-7 NIA20 Card Cage in KLIO-D

Connect the internal NIA20 cable to the J4 connector (see
Figure A-8) on the NIA20 card cage and route the cable as
?hown in Figure A-1. The cable connector engages a detent
when properly seated.

Mount the NIA20 card cage on the two NIA20 mounting
brackets that overlay the support brackets, Digital P.N.
7430279-01 (see Figure A-7), using eight 10/32 screws,
external lockwashers, and flat washers. Hang the NIA20
card cage on the top four screws, and then install the
bottom four screws.

Install the NIA20 card cage ground cable (see Figure A-8)
as follows:

Install a Tinnerman nut in hole 1 of the right side frame
member in the CPU cabinet (viewed from the rear)

.

A-15

TOP

CABLE
STRAIN
RELIEF-

XX JD -

M

FRONT

REAR VIEW SIDE VIEW FRONT VIEW

MR-13735

Figure A-8 NIA20 Card Cage Views

INTERNAL
CABLE
7019893
TO J1 CONNECTOR

INSTALL
FROM FRONT
CPU CABINET

BRACKET
INTERFACE
7428312-01

J1 CONNECTOR

BNE3
CONNECTOR

NIA20
CURRENT
LIMITER
5415695-01

CI 20
CONNECTORS

Figure A-9 NIA20 Current Limiter

A-16

Connect the ground cable on the right side frame member
by inserting a screw and using a starwasher on each side
of the ground cable.

Attach a ground label, Digital P.N. 3613272-00, closest
to hole 1.

9. Run the internal NIA20 cable to the previously positioned
stick mount and insert its other end into the rear Jl
connector of the NIA20 current limiter.

A. 4. 5.1 Installation of NIA20 Current Limiter — The NIA20
current limiter. Digital P.N. 5415695-01 is preinstalled on the
bracket interface. Digital P.N. 7428312-01, as shown in Figure
A-9. Install the bracket interface on the interface support
bracket and connect the internal and external cables in the
current limiter as follows:

1. Install the interface support bracket, Digital P.N.
7430277-01, in holes 18 or 21 located on the right side
of the CPU cabinet (rear view) using four 10-32 screws,
external lockwashers, and flat washers.

2. Connect the internal cable to the rear Jl connector on
the NIA20 current limiter (see Figure A-9)

.

3. Connect the BNE3 external cable to the front PI connector
on the NIA20 current limiter. The other end of the
external cable connects to the Ethernet transceiver.

A. 4. 5. 2 Harness Installation — The following harnesses are to
be installed:

1. DC power harness
2. Vane switch cable
3. DC voltage monitor cable
4. Fan ac cable and power cord
5. PLI bus
6. BNE3 external cable.

Figure A-10 shows a diagram of the harness and cable
interconnections. The harnesses are installed as follows:

1. Install tie-wraps approximately eight inches apart on all
harnesses. When routing cables close to internal
assemblies, use spiral wire-wrap to protect the cables.

2. Locate the dc power harness. Digital P.N. 7021197-01 (see
Figure A-11) , and the black and blue wires labeled PT5
and PT6. Connect the black wire to -5.2 ground and the
blue wire to -5.2F in the I/O cabinet (see Figure A-2)

.

A-17

5^
> z.

r^ O ^
I Q. W

-^

C3

> z

Q 5

c
o
•rH

O
Q>

C
c
o
o
v^

<u

4-)

c

<D

J3
<0

c

w
CO

(U

c

DC

O
CM
<

o
I

<

U

cn
•i-H

A-18

3. Locate and connect PI of the dc power cable into
connector Jl of the NIA20 card cage backplane (see Figure
A-8) . Next, connect P3 of of DC power cable into J2 of
the NIA20 card cage.

4. Tie-wrap the new harness to existing KLIO-D I/O power
harnesses and route this cable through the cabinet floor
as shown in Figure A-1. Use spiral wrap along the harness
where it contacts the side of the CPU frame member
nearest the H7420 power supplies (see Figure A-1)

.

5. Locate the red and white wires labeled PT7 and PT8 at the
other end of DC power cable (see Figure A-11) . Disconnect
P3 from power supply H7420 number 1. Then connect PT7 and
PT8 to pins 3 and 4, respectively, on P3 of the H7420.
Then reconnect P3 to the H7420.

6. Connect P2 of the harness to connector Jl of the H7440
regulator (see Figure A-6)

.

I/O CABINET

CARD
CAGE-
J1

H7440 ^^
REGULATOR
Jl

7021197-01

Figure A-11 DC Power Cable

7. Locate the vane switch cable. Digital P.N. 7021194-01
(see Figure A-12) . Connect PI of the vane switch cable to
connector Jl on the NIA20 card cage (see Figure A-8) .

A-19

I/O ^
BACKPLANE

CARD
CAGE
J I

8.

9.

10

Figure A-12 Vane Switch Cable

Also, connect P3 of the vane switch cable to connector J6
on the NIA20 card cage. Use stick mounts and spiral wire
wrap as needed to route and protect the vane switch
cable

.

NOTE
When a CI20 is installed, the short
switch vane cable. Digital P.N.
7020488-00, is used in a combined
CI20/NIA20 installation. Consult the CI20
reference manual (Digital order number
EK-CI20-RM-001) for other applicable CI20
installation procedures.

Remove the original KLIO-D CPU vane switch cable (P4) and
connect this to the NIA20 vane switch cable Jl (see
Figure A-13)

.

Connect P2 of the vane switch cable to the original
KLlO-D CPU vane switch assembly in the I/O cabinet.

Insert the other end of the vane switch cable as shown in
Figure A-2.

11. Apply the CPU/NIA20 air flow fault decal over the
existing CPU air fault message decal on the 863 fault
switch.

12. Locate the dc voltage monitor cable. Digital P.N.
7021196-01 (see Figure A-14)

.

13. Connect P2 of the dc voltage monitor cable to connector
J5 on the NIA20 card cage backplane (see Figure A-8) and
connect the PI end of the cable to the dc voltage monitor

A-20

board. Digital P.N. 5414506-01, mounted on the front of
the swing-away frame located inside the CPU cabinet (see
Figure A-1)

.

14. Locate the switches on the dc voltage monitor board.
Only switch SI should be on, while all other dc voltage
monitor board switches should be off.

VANE
SWITCH
CONNECTOR

P4

BEFORE

AFTER

Figure A-13 Vane Switch Harness Installation

15. Insert the dc voltage monitor board into the +5 V slot of
the dc voltage monitor panel.

16. Attach the monitor panel decal. Digital P.N, 3621501-02,
to indicate the slot used for the NIA20 dc voltage
monitor board.

17. Connect the remaining single orange wire of the dc
voltage monitor cable to a location adjacent to the
existing orange wire on the dc voltage monitor board zone
+ 5L.

A-21

18. Tie-wrap the dc voltage monitor and vane switchf harnesses
to the dc power cable. Use adhesive-backed square cable
mounts to support the harness on the baffle door and
cable ties and wire wrap along the cabinet frame.

CARD
CAGE'
J5

ADJACENT TO
Z0NE+5L

DC VOLTAGE
MONITOR
BOARD

Figure A-14 DC Voltage Monitor Cable

19. Locate the fan ac cable. Digital P.N. 7019274-06 (120 Vac
60 Hz) or 7020539-06 (240 Vac 50 Hz), and the power cord.
Digital P*N. 9107673-06 (120 Vac 60 Hz) or 7011432-02
(240 Vac 50 Hz) , (see Figure A-15) . Connect fan ac cable
connector P2 to connector J2 on the NIA20 card cage and
then join the fan ac cable and the power cord together.
Insert the end of the power cord into any available
switched outlet on the 861 power controller. Connect the
ground wire to the adjacent ground screw on the NIA20
card cage. Use a starwasher to ensure a good electrical
connection,

20. Install a Tinnerman nut in hole 13 on the frame and
attach the ground cable from the NIA20 card cage to the
frame. Use two starwashers to ensure a good electrical
connection.

21. Locate the PLI cable. Digital
A-1 for cable route and
connection) . Connect one
by a red line imprinted
M3003 and route through
NIA20 card cage. The

P.N. BC06R-08 (see Figure
Figure A-10 for cable

end of the PLI cable (identified
on top of the cable) to module
the cable strain relief on the
other end of the PLI cable

(identified by a red line imprinted on bottom of the
cable) to connector J3 on the NIA20 card cage (see Figure
A-8) . To secure the PLI cable, install adhesive foam.
Digital P.N. 1213716-00, within each of the four flat

A-22

cable clamps. Install one cable clamp on the side of the
card cage, and three across top rear of RH20 card cage
door.

22. Reinstall the CPU baffle panel.

23. Locate and connect the BNE3 external cable into connector
PI of the NIA20 current limiter (see Figure A-9) and
route down along the side frame and out the bottom of the
CPU cabinet.

FAN AC CABLE

TO
861 POWER
CONTROLLER
SWITCHED
OUTLET

J2
-CARD
CAGE

Figure A-15 Fan AC Cable and Power Cord

A. 4. 6 Installation of KLIO Adapter Board and Blank Module
Assembly

The KLIO to NI adapter board. Digital P.N. L0072-00, and the blank
module assembly. Digital P.N. 7014103-00, are installed in the
NIA20 card cage as follows:

1. The KLIO to NI adapter board and the blank module
assembly are installed into the NIA20 card cage by
opening its front hinged end panel door.

2. Install the KLIO to NI adapter board (L0072-00) in the
right-hand slot.

3. Install the blank module assembly (7014103-00) in the
adjacent slot to the left.

A-23

A. 4.7 Checkout
The physical part of the installation is complete at this point.

All that remains is to verify that the system runs properly in the

new configuration. Perform the following steps to verify the

installation.

1. Verify that the KLIO-D is no longer in the override fault

state.

2. Power-up the KLlO-D.

3. Readjust the 5 V power supply to 5.0 +/- 0.25 V. This

adjustment is located on power supply H7420 number 1,

H7440 slot 5 (see Figure A-6) . This regulator is located
nearest the H7420 power supply breaker. The voltage is

monitored at the black and red wires on connector Jl of

the NIA20 card cage (see Figure A-8)

.

4. Load and run diagnostic DFPTA for at least five passes in

executive mode.

5. Load and run diagnostic DFNIA for at least five passes in

executive mode.

6. Enable the operating system.

7. Run diagnostics UETP NIA20 test in user mode for at least

four hours.

8. Disable the operating system.

9. Remove all field service packs and tapes from the

customer's system and store in a secure area.

10. Transfer/signof f system to customer's authorized
representative.

A-24

APPENDIX B
INSTALLATION OF NIA20 IN KLIO-R

B.l OVERVIEW
This appendix describes the installation of the NIA20 network
interconnect adapter in a KLlO-R system. Figures B-1 and B-2 show
the NIA20 installed in a KLlO-R, rear and front views,
respectively. Table B^l itemizes the NIA20 parts and Table B-2
lists the harness and cable connections used in the NIA20/KL10-R
installation.

The NIA20 installation uses assigned slots in RH20 logic assembly
positions 4 and 5, with RH20 positions 6 and 7 reserved for
installation of a CI20 computer interconnect. A system containing
an NIA20 is limited to a maximum of four RH20s. In the
installation of an NIA20 , a module blank assembly. Digital P.N.
7019266-00, is used to prevent inserting any other module into
RH20 position 4 (described in Section A. 4. 3, instruction 7 — see
Figure A-3)

.

NOTE
The prior or subsequent installation of a
CI20 computer interconnect with an NIA20
requires minor deviations from the
following procedures, which are described
herein when applicable.

Installation of the NIA20 in an existing system requires
implementing the following procedures:

1. Unpacking and checkout of installation kit
2. Preinstallation checkout
3. Backplane wire adds
4. Installation of port modules
5. Installation of power supply regulator
6. Installation of NIA card cage
7. Installation of NIA current limiter
8. Installation of dc power harness
9. Installation of vane switch harness
10. Installation of dc voltage monitor harness and module
11. Installation of PLI bus
12. Installation of fan ac cable and power cord
13. Installation of internal NIA cable
14. Installation of KLIO adapter board and blank module

assembly
15. Checkout,

The following sections provide detailed instructions for
performing each of these installation procedures.

B-1

USE HOLES 18 AND 49
FOR MOUNTING
BRACKET WHEN
INSTALLING
BOTH CI AND NIA

NIA20 CARD CAGE

CI 20 CARD CAGE
(WHEN INSTALLED)

KL10 ADAPTER BOARD

7014103-00 BLANK
MODULE ASSEMBLY

HOLE 18

AC FAN HARNESS

CABLE HARNESS
TROUGH

7019862 VANE
SWITCH CABLE

7019266-00
MODULE
BLANK
ASSEMBLY

RH20 LOGIC ASSEMBLY
(P0SIT0NS4 AND 5)

H7420 POWER SUPPLY

MRUS CABLE ASSEMBLY

NIA20 PORT MODULES
.^M3001 = SLOT 19

M3002 = SLOT 20
M3003 = SLOT 21

-DC VOLTAGE
MONITOR BOARD

7020352 DC VOLTAGE
MONITOR CABLE

7019274 OR 7020539
iil^AC VAN HARNESS TO 861

POWER CONTROLLER
NiA20 CURRENT LIMITER

CI 20 BULKHEAD PLATE
7019893 INTERNAL CABLE
BNE3 EXTERNAL CABLE

BRACKET DETAIL

Fiqure B-1 NIA20 in KLIO-R, Rear View

B-2

H7420
POWER
SUPPLIES'

k

a

DDD

5

I 1

s^ wsxw
J1 POSITION 5 DC VOLTAGE MONITOR BOARD

I/O CABINET

FRONT VIEW

DC POWER CABLE
CONNECTIONS

C1 20 CARD CAGE

NIA20 CARD CAGE

^BC06R-8 PLI CABLE

CPU CABINET

BRACKET DETAIL

Figure B-2 NIA20 in KLIO-R, Front View

B-3

Table B-1 NIA20 in KLIO-R, Parts List

Line Item Part No. Description Qty

1 7019268-00 Card Cage Assy IPA-20-L 1

2

3

7019268-01 Card Cage Assy CI20 1

4

5 9007786-00 Retainer, U-nut 10-32X 9

6 9006073-01 Screw, mach pan Phil 10- 17

7 9107240-09 Wrap, cable, .250 OD vinyl wht A/R

8 9105740-55 Wire (wrap) 30 AWG KYNAR
UL14 (12 ft)A/R

9 1213716-00 Spacer, foam Polyu 1/2 5

10 7020539-06 Cable, fan ac 1

11 7019274-06 Cable, fan ac 1

12 7019273-00 Harness DC-5.2 sect Nl-2 dc+5 1

13 7019272-00 Harness DC-5.2 sect Nl-1 dc+5 1

14 7019893-7L Cable assy, Ethernet 1

15 BC06R-08 BC06R I/O cable 1

16 7019266-00 Model blank assy 1

17 M3002-00 CI20 microprocessor, multiwire HE 1

18 M3003-00 CI20 CBus/PLI interface,
multiwire 1

19 M3001-00 CI20 EBus interface, multiwire H 1

20 9007032-00 Tie, cable bundl. Dia 0-1-3/4"=

101 A/R

"

21 1213715-00 Clip, flat cable w/adhesive bk 5

22 H7440-00 POAl H7440 1

23 L0072 NI20 (KLIO to NI adapter) 1

24 7014103-00 Blank module assy 1

25 9107673-06 Pwr Cord, term 3-14 SJT 115 1

26 7011432-02 Pow cord extension 50 Hz 1

27 9007651-00 Washer, lock external steel 17

28 9006668-00 Washer, flat SST 17

29 7020352-00 Harness, dc voltage monitor 1

30 7019862-00 Harness, vane switch 1

31 5414506-01 Voltage, monitor board 1

32 7019270-lJ Bus, cable, M assy 1

33 3621499-01 Label, DCV monitor CI20 1

34 3613272-00 Label, adhesive back. Mylar caP 1

35 9007031-00 Tie, cable bundl. Dia 0-3/4"=101 36

36 9008264-00 Mount, cable tie, adhesive bac k A/R

37 3621498-01 Label, airflow, CPU CI20 1

38 5415695-01 Current limiter 1

39 9006022-01 Screw, mach pan phil 6- 4

40 9006633-00 Washer, lock internal steel 4

41 7020488-00 Cable, short switch vane 1

42 7430278-01 Bracket, mounting 1

43 9006659-00 Washer, flat S/PAS 2

44 7021448-5C Cable dc voltage monitor Sect. 1 1

45 3617674-00 Label, serial/power w/o UL + CSA 1

B-4

Table B-1 NIA20 in KLIO-R, Parts List (Cont)

Line Item Part No. Description Qty

^^ 3617674-01 Label, serial/power w/UL & CSA 1
47 3617880-09 Label, class A subassembly 1

^ 3621501-02 Label, module location, NI20 1

Table B-2 NIA20 in KLIO-R, Harness and Cable Connections

Harness Connections

Parts
List
Item Harness Terminals
No. Point Connection Connection Remarks

12 _ PI NIA20 BP J2
P3 NIA20 BP Jl

5 - CPU #3 BF GND
6 - CPU #3 BP -5.2

P2 Sect N-2 Jl Parts list item 13

13 - PI H7440 Jl See Figure B-5
7 - See Figure B-10
8 - See Figure B-10

30 - PI Fan Brkt Jl See Note 1
P2 See Figure B-10 See Note 1

Jl See Notes 1 and 2
P3 NIA20 BP J6 See Notes 1 and 3

29 - P2 NIA20 BP J5
PI Jl Parts List Items

31 and 44
6 - +5V Mon Bd Jl-5 See Figure B-2

41 P3 PI CI20 cable vane See Note 4
Switch

P2 - NIA20 fan brkt Jl See Note 4
PI - CI20 fan brkt Jl See Note 4

44 - Jl PI See Figure B-13
PI Mon Bd Jl Parts List Item 31

NOTES:

1. Items not needed when CI kit is installed:

Item Qty Part No. Description

5 6 9007786-00 Retainer, U-nut
6 6 9006073-01 Screw, mach pan phil 10-

B-5

Table B-2 NIA20 in KLIO-R, Harness and Cable Connections (Cont)

27 6

28 6

30 1

9007651-00
9006668-00
7019862-00

Washer, lock external steel
Washer, flat SST
Harness, vane switch

Jl on parts list Item 30 (harness, vane switch) connects with
existing connector P4 (see Figure B-12)

.

Relocate cable from CI20 card cage at J6 connector and insert
into NIA20 card cage J6 connector.

Parts list Item 42 used when CI20 and NIA20 are installed
together.

Cable Connections

Parts
List
Item
No.

From
Unit Location Re£. Desig. Unit

To
Location Ref , Desig. Remarks

10 Cd.Cage

Fan Brkt

Gnd

J2

Gnd

P2

25 or
26

Jl PI NIA20-CB

14 Cd.Cage J4 PI 38 P2

25 or
26

Item 10
or 11

PI Jl 861 PC PI Connect
any
available
switched
outlet

1/2 Cd.Cage Gnd

15

32

Cabrail Hole 1

CI20 B J3 PI stripe RH20
DTE

M3003 J2 P2

down CC up

M3003 Jl P3 M3002 Jl P2
M3001 Jl PI

RH20 BP Bl Nl — RH20 BP B13B1 -

B13B1 - B19B1 -

C10L2 - B13F2 -

B13B2 - B19B2 -

C10K2
B13U1
C10T2
C13B1
C12H2
C13N1
C12L1

-

B13U1
B19U1
C13B1
C19B1
C13N1
C19N1
C13F2

-

C13B2 - C19B2 -

C14H2 - A15R2 -

B-6

Table B-2 NIA20 in KLIO-R, Harness and Cable Connections (Cont)

11

C14F1
A14J2
C14P1
C14K2
B14J1
C20H2
C20F1
A20J2
C20P1
C20K2
B20J1

Cd.Cage Gnd Gnd 25 or
26

F15A1
A15E1
A15D2
A15S2
B15A1
A21R2
F21A1
A21E1
A21D2
A21S2
B21A1

Jl PI NIA20-CA

Fan Brkt J2 PI

B.2 UNPACKING AND CHECKOUT
Before unpacking any equipment, move all boxes into the computer
area. Check the shipment against the packing list to be sure that
all boxes were sent. If any boxes are missing, contact the
customer and the branch field service manager. Check that all
boxes are sealed, and there is no sign of external damage, such as
dents, holes, or damaged corners.

If any boxes are open or damaged, document it on the installation
or field service report and inform the customer. Open the boxes
one at a time, starting with the box marked "READ ME FIRST" and
find the packing slip. Check the contents of the box against the
packing slip and examine each item for damage. Note missing or
damaged items on the installation report or field service report.

This completes the unpacking and checkout phase. Advise the
branch field service manager of any problems during this phase. If
any items are damaged, the branch field service manager may want
the customer to file an insurance claim. For missing items, the
branch field service manager should get a short-ship request.

B.3 EQUIPMENT NEEDED FOR INSTALLATION AND CHECKOUT
The following equipment is required for installation and checkout
of the NIA20:

B-7

B.4 INSTALLATION PROCEDURE

B.4.1 Preinstallation Checkout
Before performing the installation, verify that the currently
configured system is operating properly to preclude the
possibility of present system problems being ascribed to the NIA20
after its installation.

1. Remove all customer media, to minimize the possibility of
corrupting customer data.

2. Mount the supplied KLAD pack, bring up the diagnostic
monitor, and run the B string to verify that the system
is working properly.

3. Power-down the system.

4. Verify that the system has a M8532-YA board installed.
If not, replace the currently installed M8532 with a

M8532-YA.

5. RH20 positions 4 and 5 are used for the NIA20. If there
is an RH20 in position 4, remove it. If there is an RH20
in position 5, leave it temporarily installed and perform
diagnostic DFRHB to verify the reliability of the

backplane wiring. If there is no RH20 in position 5,

relocate a module from one of the other RH20 positions to

position 5.

6. Power-up the system and run diagnostic DFRHB. This
verifies that the backplane wiring of RH20 position 5 is

functional. Power-down the system and reinstall the RH20
in its original position.

7. Perform diagnostic DFRHB also in RH20 position 7 to

verify the reliability of existing backplane wiring in

RH20 positions 6 and 7 for CI20 installation, before
backplane wiring modifications for the NIA20 are
implemented

.

8. Power-down the system and reinstall the RH20 in its

original position.

B.4. 2 Backplane Wire Adds
For the NIA20 installation, 24 new wires must be added to RH20
backplane positions 4 and 5. An examination of the RH20 backplane
must be performed to confirm the physical addition of the wire
wraps listed in Table B-3. The table contains a Check column for
the wire installer to record installation progress.

4^1 B-8

ToTo prepare the wire adds, strip approximately 1 inch of
insulation from the wire to allow sufficient turns to be made on
the wire wrap post. After each wire is added, enter a check in the
blank adjacent to the wire listing in Table B-3.

To assure the reliability of the new wiring, an ohmmeter check of
each new wire add should be performed by a person other than the
wire installer.

Table B-3 NIA20 in KLIO-R

Signal Name

EBUS Dll L
EBUS D12 L
EBUS D13 L
EBUS PARITY L
EBUS PIOO L
EBUS PARITY ACTIVE L
MPR7 MWBUSCTLFLDOl H
MPR7 MWMGCFLD08 H
MPR7 MWTIMEFLD H
CBIl CLK2 L
CBI2 CLK4 L
CBI2 CCCHANERR L
MPR7 MWBUSCTLFLDOl H
MPR7 MWMGCFLD08 H
MPR7 MWTIMEFLD H
CBIl CLK2 L
CBI2 CLK4 L
CBI2 CCCHANERR L

From

• BlONl
*- C10L2
-CI OK 2

•^C10T2
-*<;12H2
-CiMil
.- C4^«-2
-wC14Fl
-=A14J2
-C14P1
-C14K2
~-B14Jl
-C20H2

^>A20J j
-.-C!TOp1

-'C20K2
B20J1

B13B1
B13B2
B13U1

-

C13B1
C13tJl
C13B2
A 1 5R2 "4

(Fl_g5/
THei^
A15D2K
A15S2 =^

B15A1>C

FJJ.A1 /
fA21Eri
IA21D2

TaT/

B19B1 ^
B19B2 ^
(BTful^
C19B1 X
C19N1 /v
C19F2 X

B.4.3 Installation of Port Modules
Protective backing is placed on the lower third noncomponent side
of each port module and the upper third of the noncomponent side
of the M3002. As the modules are inserted and/or removed, the
protective backing protects the MBus and PLI bus cables. The
protective backing should not interfere with the card guide or
cover the gold finger contacts on the module. Insert the port
modules as follows:

1. Connect MBus cable. Digital P.N. 7019270-lJ. Be sure to
orient the cable so that the flat wire comes out of the
cable header away from the board, as shown in Figure B-3.

B-9

Insert the M3001 EBus interface/port ALU module in the

rightmost slot of RH20 position number 5 (slot 19,

looking at the backplane from the module side) . The

arrow on cable should be aligned with the arrow on the

board connector.

3.

4.

Connect the MBus cable to the M3002 port microprocessor
module as shown in Figure B-3.

Insert module M3002 in slot 20 to the

installed M3001 as shown in Figure B-3.
left of the

5. Connect the MBus cable to the M3003 module as shown in

Figure B-3.

6. Install the M3003 CBus/PLI interface module in slot 21,

which is located to the left of the installed M3002.

M3003
SLOT 21

M3002
SLOT 20

r- M3001
f SLOT 1 9

MBUS
CABLE

Figure B-3 MBus Cable Interboard Connection, Top View

B-10

Install the module blank assembly, Digital P.N.
7019266-00, in RH20 position 4, slot 22. This assembly
blocks slots 22, 23, and 24. It prevents modules from
being plugged into RH20 position 4 and provides a baffle
for system cabinet airflow.

Perform an ohmmeter check between PT17U and ground to
verify that there are no shorts to ground.

9. Fold the MBus cable into the module blank assembly as
shown in Figure B-3.

10. Close the module door.

11. Attach the self-sticking module utilization decal.
Digital P.N. 3622344-02, on the upper rear baffle panel.

12. Power-up the KLIO.

13. Readjust the existing +5 V power supply to 5.0 + 0.25 V.
This adjustment is located on H7420 number 1 in H744
number 4 . The location of this regulator is farthest away
from the circuit breaker. The voltage is monitored at
+5E, between PT17U and ground.

14. Type MR (CR) with KLDCP loaded and running; then type FXl
(CR) in response to the command prompt, as shown below:

>. MR (CR)

>. FXl (CR)

15. De-skew the port modules using a Tektronix 475 or
equivalent 100 MHz minimum oscilloscope by performing the
following steps (see Figures B-4 and B-5) :

16. Connect channel 1 of the oscilloscope to MTR MBOX CLK H,
4D33P1, on the CPU backplane. Use a ground clip.

17. Set the time base to 20 ns.

18. Set channel 1 vertical gain to 0.5 V/division. Set the
ground reference to 1.3 V above the horizontal center
level of the oscilloscope (MTR MBOX CLK H is an ECL
signal)

.

19. Set the oscilloscope sync to positive external.

20. Connect external sync input to CHTO H, 4B09K1 on the CPU
backplane. Use a ground clip.

21. Connect channel 2 to CDSl, EBUS CLK L, 2A21F1 on the I/O
backplane. Set the channel 2 vertical gain to 0.5

B-11

V/division. Use a ground clip. To measure TTL voltages,
set the ground reference to 1.5 V below the horizontal
center line of the oscilloscope.

22. Press the trigger view switch of the oscilloscope and
display the external sync. Adjust the display, so that
the rising edge of the external sync aligns with the
vertical center line of the oscilloscope.

23. Display MBOX CLK H, channel 1. Identify the rising edge
of MBOX CLK H that occurs prior to the vertical center
line of the oscilloscope. Display channel 1 and channel
2.

24. Put the KLIO-R in the override fault state. Remove the
I/O rear door to access the I/O backplane.

25. Locate the third the bottom potentiometer on the clock
module (M8559) in slot 12 of the I/O backplane. Using
this potentiometer, adjust the falling edge of channel 2,
EBUS CLK L so that it crosses the rising edge of MBOX CLK
H. This crossing occurs on the horizontal center line of
the oscilloscope.

26. Disconnect all probes.

27. Mount the KLAD pack on the front end RP06.

28. Load and run diagnostic DFPTA to verify proper
functioning of the modules. If the modules fail,
troubleshoot as directed by the diagnostic. If the
modules are functioning properly, continue with the
installation.

i
\

\

^.. _^\,

t \
in INI J J I 1 1 J 1 J

1 1
1 fi 1 1 1

1

1 1 1

1

4

till 1 1
1

1 1 1 1

1

V /\

1 1 1 1 (Mi

Q- V/v ,/L
V/>/v"V^ jrv> \j -

:

\

50 TlV
\
: 20 iS

EXTERNAL SYNC
(CHTOH, 4B09K1)

EXTERNAL SYNC (CHTO H)

Figure B-4 NIA20 De-skew Timing. External Sync (CHTO H)

B-I2

CHANNEL 2

(EBUS CLK L, 2A21F1:

CHANNEL 1

MTR MBOX CLK,
(4D33P1)

EBUS CKL L AND MTR MBOX CLK

Figure B-5 NIA20 De-skew Timing. EBUS CLK L and MTR MBOX CLK

B.4.4 Power Supply Regulator Installation
Three H7420 power supplies are located on the I/O cabinet side
wall as shown in Figure B-6. The H7440 regulator to be added is
installed in the upper H7420 power supply location. This
additional +5 V regulator is required to support the NIA20 card
cage and is installed as follows (see Figure 3-6)

:

1. Remove the spare slot filler panel from slot 5 of the
H7420 number 1 power supply. Save all existing hardware.

2. Take the new H7440 regulator from the kit and install the
H7440 in slot 5 of H7420 number 1, using two screws on
top and one thumbscrew at the bottom. Some systems may
use H744 or H7440 regulators.

B . 4 . 5 Installation of NIA20 Card Cage/Internal Cable

NOTE
When a CI20 is installed, the
mounted as shown in Figure B-1.

NIA20 is

To install the NIA20 card cage shown in Figure B-7
internal NIA20 cable, perform the following operations:

and the

1. Install the two NIA20 mounting brackets, DEC part number
7430278-01, shown in Figure B-8 as follows:

Remove and reposition any tie-wrapped cables from the
left frame member of the CPU cabinet as viewed from rear
(see Figure B-1) to accommodate the NIA20 mounting
brackets and card cage.

B-13

J3 15 PIN CONNECTOR

DC HARNESS

Figure B-6 H7420 Power Supply

Install 4 U-nuts (Tinnerman nuts) , Digital P.N.
9007786-00, on the left side frame member of the CPU
cabinet (viewed from the rear) . Insert the Tinnerman nuts
into frame holes 18 and 49 on each vertical side frame
member counting up from the cabinet bottom. Two Tinnerman
nuts are inserted into each side frame member.

Check that the lip of each NIA20 mounting bracket.

Digital P.N. 7430278-01 (see Figure B-8) , is at the
bottom (used only in combined NIA20/CI20 installations) .

Use a total of four 10/32 one-half inch Phillips panhead
machine screws. Digital P.N. 9006073-01 and four No. 10

star lockwashers. Digital P.N. 9007651-00.

B-14

TOP

CABLE
STRAIN
RELIEF-

FRONT

REAR VIEW SIDE VIEW FRONT VIEW

Figure B-7 NIA20 Card Cage Views

2. Locate the NIA20 internal cable strain relief (white) on
the left side of NIA20 card cage as viewed from the rear
(see Figure B-7) . Because of the inaccessible location of
this strain relief once the card cage is mounted, the
internal cable is be routed through it before the card
cage is installed.

3. Locate the eight-foot internal NIA20 cable. Digital P.N.
7019893-7L.

4. Prepare the internal NIA20 cable for installation by
positioning a stick mount on the lower left frame member
of the I/O cabinet (see Figure B-9) located above the
current limiter and reserved CI20 plate location.

5. Route the eight-foot internal NIA20 cable through the
white plastic strain relief on the NIA20 card cage. Allow
enough slack to connect the internal cable to the NIA20
card cage backplane and tighten the strain relief.

6. Connect the internal NIA20 cable to the J4 connector (see
Figure B-7) on the rear of the NIA20 card cage and route
the cable as shown in Figure B-1. The cable connector
engages a detent when properly seated.

B-15

CI 20
CARD
CAGE

HOLE 49

HOLE 18

7430278-01
MOUNTING
BRACKETS
(USED ONLY
IN COMBINED
INSTALLATION)

NIA20
CARD
CAGE
REAR CONNECTOR
PANEL VIEW)

MOUNTING
BRACKETS

CPU CABINET
REAR VIEW)

Figure B-8 NIA20 Card Cage in KLIO-R

7. Mount the NIA20 card cage on the two NIA20 mounting
brackets (see Figure B-8), using four 10/32 screws,
external lockwashers, and flat washers. Hang the NIA20
card cage on the top two screws; then install the bottom
two screws.

8. Install the NIA20 card cage ground cable as follows:

Install a Tinnerman nut in hole 1 of the left side frame
member of the CPU cabinet (viewed from the rear)

.

Connect the ground cable on the left side frame member by
inserting a screw and using a starwasher on each side of
the ground cable.

Attach a ground label, 3613272-00, closest to hole 1.

B-16

9. Run the internal NIA.20 cable to the previously positioned
stick mount and insert the other end of the cable into
the rear Jl connector of the NIA20 current limiter.

B.4.5.1 Installation of NIA20 Current Limiter — The NIA20
filler plate. Digital P.N. 7429334-01, mounted above the CI20
plate located on the bottom panel of the I/O cabinet is replaced
by the NIA20 current limiter. Digital P.N. 5415695-01 (see Figure
B-9). Install the NIA20 internal cable and current limiter
follows:

as

1. Locate the
cabinet.

NIA20 filler plate from the rear of the I/O

2. Remove the four screws holding the filler plate and save
screws to install the NIA20 current limiter using its
aligned threaded holes.

3. Connect the internal cable to the rear Jl connector and
also connect the BNE3 external (Ethernet transceiver)
cable to the front PI connector located on the NIA20
current limiter (see Figure B-9).

CUTAWAY VIEW

NIA20 CURRENT LIMITER
5415695-01

NTERNAL
CABLE
TO 701 9893-7 L

TO Jl CONNECTOR

CI 20 BULKHEAD PLATE

I/O CABINET

MR-13750

Figure B-9 NIA20 Current Limiter, Cutaway View

CPU
CABINET

B-17

B.4.5.2 Harness Installation — The following harnesses are to
be installed:

1. DC power harness (two sections)
2. Vane switch cable
3. DC voltage monitor cables (two sections)
4. Fan ac cable and power cord
5. PLI bus
6. BNE3 external cable.

Figure B-10 shows a diagram of the harness and cable
interconnections. The harnesses are installed as follows:

1. Install tie-wraps approximately eight inches apart on all
harnesses. When routing cables close to internal
assemblies, use spiral wire-wrap to protect the cables.

2. Locate the two sections of the dc power harness. Digital
P.N. 7019272-00, and 7019273-00 (see Figure B-11)

.

3. Attach one-half of dc power cable. Digital P.N.
7019272-00, connecting PI of dc power cable into
connector Jl of the NIA20 card cage backplane (see Figure
B-7) . Next, connect P3 of of dc power cable Into J2 of
the NIA20 card cage. Locate the black and blue wires
labeled PT5 and PT6 of the dc power cable and connect the
black wire to -5.2 ground; then connect the blue wire to
-5.2H in the CPU cabinet (see Figure B-2)

.

4. Locate the other half of the dc power cable. Digital P.N.
70-19273-00 (see Figure B-11) , and join its end labeled
Jl to P2 on the other half of the cable (Digital P.N.
7019272-00)

.

5. Tie-wrap the new harness to the existing KLIO-R CPU power
harness and route through the cabinet floor as shown in
Figure B-1. Use spiral wrap along the harness where it
contacts the side of the I/O frame member nearest the
H7420 power supplies (see Figure B-1)

.

6. Locate the red and white wires labeled PT7 and PT8 at the
other end of the harness (see Figure B-11) . Disconnect P3
from power supply H7420 number 1, then connect PT7 and
PT8 to pins 3 and 4, respectively, on P3 of the H7420.
Then reconnect P3 to the H7420.

7. Connect P2 of the dc power cable. Digital P.N. 7019273-00
(see Figure B-11) , to connector Jl of the H7440 regulator
(see Figure B-6)

.

8. Locate the vane switch cable. Digital P.N. 70-19862-01
(see Figure B-12) . Connect PI of the vane switch cable to
connector Jl on the card cage (see Figure B-7). Use stick

B-18

mounts and spiral wire-wrap as needed to route and
protect the vane switch cable.

NOTE
When a CI20 is installed, the shorter of
the two supplied vane switch cables is
used in a combined CI20/NIA20
installation. Consult the CI20 reference
manual (Digital order number
EK-CI20-RM-001) for other applicable CI20
installation procedures.

9. Connect P3 of the vane switch cable to connector J6 on
the card cage.

10. Remove original KLIO CPU vane switch cable (P4) and
connect this to the NIA20 vane switch cable Jl (see
Figure B-13)

.

11. Connect P2 of the vane switch cable to the original KLIO
CPU vane switch assembly.

12. Apply the CPU/NIA20 air flow fault decal over the
existing CPU air fault message decal on the 863 fault
switch.

13. Locate the two sections of the dc voltage monitor cable,
Digital P.N. 7020352-00 and 7021448-5C (see Figure B-14)

.

14. Connect P2 of the dc voltage monitor cable (Digital P.N.
7020352-00) to connector J5 on the card cage backplane
and route the other end (PI) along the inside cabinet top
cable trough (see Figure B-1) connecting with Jl of the
second section of the dc voltage monitor cable (Digital
P.N. 7021448-5C) which has its PI connected to the Jl on
the new dc voltage monitor board (Digital P.N.
5414506-01).

^

15. Locate the switches on the voltage monitor board. Only
switch 1 should be on, while all other switches should be
off. Insert the dc voltage monitor board into the +5 V
slot (see Figure B-2) of the dc voltage monitor card
cage.

16. Attach the monitor panel decal. Digital P.N. 3621499-01,
indicating the RH20 slot position used for the NIA20
voltage monitor board.

17. Connect the remaining single orange wire of the PI end of
the dc voltage monitor cable (Digital P.N. 70221448-5C)
to a location adjacent to the existing orange wire on the
dc voltage monitor board zone +5L.

B-19

B
<0

u
cn
<o
•rH

Q
C
O
•d
4-)

o

c
c
o
o
Vj

<D

c

JD
fO

LU
U

^r. <0

U)

c

33

O
CM

I

CO

D

fa

B-20

CPU CABINET

CARD
CAGE-
J1

H7440
POWER'^^
REGULATOR
J1

Figure B-11 DC Power Cable

18. Tie-wrap the dc voltage monitor and vane switch harnesses
to the dc power cable. Use adhesive-backed square cable
mounts to support the harness on the side of the NIA20
card cage.

19. Locate the fan ac cable. Digital P.N.
60 Hz) or 7020539-06 (240 Vac 50 Hz)

,

Digital P.N. 9107673-06 (120 Vac 60
(240 Vac 50 Hz) shown in Figure B-15
fan ac cable to connector J2 on the
join the fan ac cable to the power cord. Insert the
end of the power cord to any available switched outl
the 861 power controller. Connect the ground wire t
adjacent side ground screw on the NIA20 card cage,
starwasher to ensure a good electrical connection.

7019274-06 (12
and the power
Hz) or 70114

, Connect P2 o
card cage and

Vac
cord,
32-02
f the
then

other
et on
o the
Use a

20. Install a Tinnerman nut in hole 13 on the frame and
attach the ground cable from the NIA20 card cage to the
frame. Use two starwashers to ensure a good electrical
connection.

B-21

x:
o
+j
•1-1

<D

C

>

fNJ

CO

u
D

•iH

D U
CL <
o CO

B-22

VANE
SWITCH
CONNECTOR

P4

BEFORE

TO
I/O CABINET
CONNECTOR

AFTER

Figure B-13 Vane Switch Harness Installation

21. Locate the PLI cable, Digital P.N. BC06R-08 (see Figure
B-1 for cable route and Figure B-10 for cable
interconnection) . Connect one end of the PLI cable
(identified by a red line imprinted on top of the cable)
to module M3003, and route through cable strain relief on
the NIA20 card cage. The other end of the PLI cable
(identified by a red line imprinted on the bottom of the
cable) to connector J3 on the NIA20 card cage (see Figure
B-7) . To secure the PLI cable, install adhesive foam.
Digital P.N. 1213716-00, within each of the four flat
cable clamps. Install one cable clamp on the side of the
CPU card cage, and three cable clamps across the top rear
of air shroud assembly.

22. Replace the I/O module door.

23. Locate the BNE3 external cable. Route the BNE3 external
cable along the bottom of the CPU and I/O cabinets and
then out the bottom of the I/O cabinet. Connect the cable
to the front PI connector on the NIA20 current limiter
(see Figures B-1 and B-9)

.

B-23

CONNECT

CARD
cage"
J5

7021448-5C

ADJACENT TO
ZONE +5L

DC VOLTAGE
MONITOR
BOARD

Figure B-14 DC Voltage Monitor Cable

FAN AC CABLE

TO
861 POWER
CONTROLLER
SWITCHED
OUTLET

-CARD
CAGE

Figure B-15 Fan AC Cable and Power Cord

B.4.6 Installation of KLIO Adapter Board and Blank Module
Assembly

The KLIO to NX adapter board. Digital P.N. L0072-00, and the blank
module assembly. Digital P.N. 7014103-00, are installed in the
NIA20 card cage as follows:

B-24

1. The KLIO to NI adapter board and the blank module
assembly are installed into the NIA20 card cage from the
rear of the CPU cabinet.

2. Install the KLIO to NX adapter board (L0072-00) in the
Hf^ffit-hand slot.

3. Install the blank module assembly (7014103-00) in the
adjacent slot to the ,i=e4^1lfc^V^ f

-

B.4.7 Checkout
The physical part of the installation is complete at this point.
All that remains is to verify that the system runs properly in the
new configuration. Perform the following steps to verify the
installation.

1. Verify that the KLIO-R is no longer in the override fault
state

.

2. Power-up the KLlO-R.

3. Readjust the 5 V power supply to 5.0 + 0.26 V. This
adjustment is located on power supply H7420 number 1,
regulator H7440 slot 5 (see Figure B-6) . This regulator
is located nearest the H7420 power supply breaker. The
voltage is monitored at the black and red wires on
connector Jl of the NIA20 card cage (see Figure B-7)

.

4. Load and run diagnostic DFPTA for at least five passes in
executive mode.

5. Load and run diagnostic DFNIE for at least five passes in
executive mode.

6. Load and run diagnostic DFNIA for at least five passes in
executive mode.

7. Enable the operating system.

8. Run diagnostics DFPTA in user mode for at least five
passes

.

9. Run diagnostic UETP NIA20 test in user mode for at least
four hours.

10. Disable the operating system.

11. Remove all field service packs and tapes from the
customer's system, and store in a secure area.

12. Transfer/sign-off system to customer's authorized
representative.

B-25

INDEX

Abort, 1-11
ALU, 5-2
Am2910, 5-49

B

Backoff, 1-11
BLINK, 2-2, 2-19
BSD, 2-12

Carrier Sense, 1-12
CBus, 1-6, 4-13, 5-36
CMVR Interface Module, 5-29
CNTRC Response, 2-27
Coaxial Cable Connection, 1-7
Command Queue, 2-8, 2-14, 5-81
CRC, 1-10
CRAM, 5-50
CRAM PE, 2-21
CSMA/CD, 1-1
CSR, 2-14, 2-42, 4-2, 5-2

D

Data Field, 1-10
Data Formatting, 2-39
DC To DC Converter, 1-7
Defer, 1-10
Destination Address, 1-9
DGRCV Response, 2-21
DGSNT Response, 2-23
Discarded Datagrams, 2-40

EBus,l-5, 4-6, 5-2, 5-14, 5-20
Entry Removal, 2-11
Error Events, 2-41
Error Handling, 2-39
Ethernet, 1-1, 1-8, 2-43
Event Counters, 2-41

H

Heartbeat, 1-7

H4000, 1-6

Idle Loop, 5-70
Industry Compatible Mode, 2-13
Initialization, 5-65
lOP Function Control Word, 5-16

K

KLIO-D, A-2
KLIO-E, 3-1
KLIO-R, B-2

LAN, 1-1
LAR, 5-47
LDPTT Command, 2-24
LDMCAT Command, 2-26
Local Command, 5-103
Local Storage RAM, 5-63
Local Store Address Register, 5-64
Loopback Commands, 2-38

M

Manchester Encoding, 1-11
MBus, 3-9
MCAT, 2-25
MCATLD Response, 2-26
Microcode, 5-65
Microprocessor Control Logic, 5-65
Microsequencer , 5-44
Microword Fields, 5-51
MOP, 2-39
M3001, 1-5, 5-1
M3002, 1-6, 5-1
M3003, 1-6, 5-1

FLINK, 2-2, 2-9

INDEX-1

N

Network Architecture, 2-43
NI, 1-1
NIA20, 1-3

KLIO-D Installation, A-1
KLIO-E Installation, 3-1
KLIO-R Installation, B-1
Receive Operation, 4-30
Transmit Operation, 4-27

NSARD Response, 2-36
NSAWRT Response, 2-38

Self Directed Commands, 2-38
SNDDG Command, 2-15
Source Address, 1-10

Transceiver, 1-6, 1-12
Cable Connections, 1-8, 1-12

Transmit, 4-27, 5-81
Type Field, 1-10

W

Packet Format, 1-8
Packing Mode, 2-39
Parity Predictor, 5-39
PCB, 2-4
PLI, 4-20
PLIRD Response, 2-34
PLIWRT Response, 2-33
Pointers, 2-2
Port, 1-5

ALU, 5-2
Driver commands, 2-14
Microprocessor, 5-41
States, 4-1

Preamble, 1-9
PTTLD Response, 2-25

Watchdog Timer, 1-7
WRTNSA Command, 2-37
WRTPLI Command, 2-32

Queue
Entry Removal, 2-11
Headers, 2-8
Interlocks, 2-3
Locations, 2-3
Structure, 2-2

R

RAR, 5-46
RCCNT Command, 2-27
RDNSA Command, 2-35
RDPLI Command, 2-33
Receive, 4-30, 5-73
Response Queue, 2-6, 2-15
Retransmit, 1-11

INDEX-2

Digital Equipment Corporation • IVIarlboro, MA 01762

